In-situ tailoring microstructures to promote strength-ductility synergy in laser powder bed fusion of NiCoCr medium-entropy alloy

被引:37
|
作者
Zhou, Kexuan [1 ]
Cui, Dingcong [1 ]
Chai, Zishu [1 ]
Zhang, Yashan [1 ]
Yang, Zhongsheng [1 ]
Zhu, Chao [1 ]
Wang, Zhijun [1 ]
Li, Junjie [1 ]
Wang, Jincheng [1 ]
机构
[1] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser powder bed fusion; Medium-entropy alloy; Laser remelting; In-situ tailoring microstructures; Strength-ductility synergy; AUSTENITIC STAINLESS-STEEL; MECHANICAL-PROPERTIES; GRAIN-SIZE; DYNAMIC RECRYSTALLIZATION; CRYSTALLOGRAPHIC TEXTURE; DISLOCATION NETWORK; METALLIC COMPONENTS; EVOLUTION; 316L; STRESS;
D O I
10.1016/j.addma.2023.103443
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion (LPBF) has received widespread attention owing to its digital, flexible, and controllable fabrication process, which opens new possibilities for the direct and fast production of metal components with extremely complex geometries and good performance. Generally, post-treatments are conducted to further regulate the microstructure and performance of as-deposited geometrically-complex metal components. In this work, instead of applying post-treatments, we demonstrate a novel in-situ remelting strategy to effectively enhance the strength without sacrificing the ductility of LPBF-fabricated NiCoCr medium-entropy alloy by in-process tailoring microstructures. We find that in-situ remelting processing not only changes the melt pool ge-ometry in favor of optimizing densification and developing unique crystallographic lamellar microstructures, but also promotes inherent thermal distortions and heat treatments during manufacturing resulting in increased dislocation density and grain refinement in the LPBF-remelted specimen. The present work paves a new way in additively manufacturing metal materials to tailor microstructures for enhanced mechanical performance without additional treatments.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] In-situ alloying of metal particle-reinforced CoCrNi medium-entropy alloy via laser powder bed fusion
    Yang, Hongming
    Zhen, Hu
    Li, Minghui
    Li, Gengchen
    Jia, Yuefei
    Wu, Shiwei
    Bian, Xilei
    Mu, Yongkun
    Sun, Kang
    Jia, Yandong
    Wang, Gang
    INTERMETALLICS, 2025, 178
  • [22] Hierarchical precipitates facilitate the excellent strength-ductility synergy in a CoCrNi-based medium-entropy alloy
    Wang, Qiang
    Zhang, Tuanwei
    Jiao, Zhiming
    Wang, Jianjun
    Zhao, Dan
    Wu, Guiying
    Qiao, Junwei
    Liaw, Peter K.
    Wang, Zhihua
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 873
  • [23] Enhanced Strength-Ductility Combination in Laser Welding of CrCoNi Medium-Entropy Alloy with Ultrasonic Assistance
    Zhou, Hongmei
    Yan, Shaohua
    Zhu, Zhongyin
    METALS, 2024, 14 (09)
  • [24] Carbon-microalloying enhances strength-ductility synergy of (FeCoNi)90Al10 medium-entropy alloy via tailoring precipitation
    Cao, Fang
    Feng, Hao
    Huang, Yiduo
    Li, Huabing
    Wang, Xiaolan
    Zhou, Gang
    Zhang, Shucai
    Zhu, Hongchun
    Wang, Haijian
    Jiang, Zhouhua
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 916
  • [25] Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium-entropy alloy
    Wenjie Lu
    Xian Luo
    Dou Ning
    Miao Wang
    Chao Yang
    Miaoquan Li
    Yanqing Yang
    Pengtao Li
    Bin Huang
    JournalofMaterialsScience&Technology, 2022, 112 (17) : 195 - 201
  • [26] Enhanced strength-ductility synergy in a Ta-doped CoCrNi medium-entropy alloy with a dual heterogeneous structure
    Xu, Dingfeng
    Zhang, Haitao
    Wang, Mingliang
    Lu, Yiping
    Chen, Xiaohu
    Ren, Zheng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 860
  • [27] Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium-entropy alloy
    Lu, Wenjie
    Luo, Xian
    Ning, Dou
    Wang, Miao
    Yang, Chao
    Li, Miaoquan
    Yang, Yanqing
    Li, Pengtao
    Huang, Bin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 112 : 195 - 201
  • [28] Enhanced strength-ductility synergy in a Ta-doped CoCrNi medium-entropy alloy with a dual heterogeneous structure
    Key Laboratory of Solidification Control and Digital Preparation Technology , School of Materials Science and Engineering, Dalian University of Technology, Dalian
    116024, China
    不详
    116024, China
    不详
    315000, China
    不详
    315103, China
    Mater. Sci. Eng. A,
  • [29] Interstitial doping enhances the strength-ductility synergy in a CoCrNi medium entropy alloy
    Moravcik, Igor
    Hornik, Vit
    Minarik, Peter
    Li, Linlin
    Dlouhy, Ivo
    Janovska, Michaela
    Raabe, Dierk
    Li, Zhiming
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 781
  • [30] Data-fusion for in-situ monitoring and molten state identification during LPBF of NiCoCr medium-entropy alloy
    Li, Hong
    Yan, Shaohua
    Fu, Yu
    SCIENTIFIC REPORTS, 2024, 14 (01):