Monocular depth estimation network with single-pixel depth guidance

被引:1
|
作者
Lee, Hongjae [1 ]
Park, Jinbum [1 ]
Jeong, Wooseok [1 ]
Jung, Seung-won [1 ]
机构
[1] Korea Univ, Dept Elect Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Cost-effective solutions - Depth camera - Depth Estimation - Global informations - Hardware cost - Hardware space - Multicamera systems - Performance - Single photon avalanche diode - Single pixel;
D O I
10.1364/OL.478375
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Due to the scale ambiguity problem, the performance of monocular depth estimation (MDE) is inherently restricted. Multi-camera systems, especially those equipped with active depth cameras, have addressed this problem at the expense of increased hardware costs and space. In this Letter, we adopt a similar but cost-effective solution using only single-pixel depth guidance with a single-photon avalanche diode. To this end, we design a single-pixel guidance module (SPGM) that combines the global information from the single-pixel depth guidance with the spatial information from the image at the feature level. By integrating SPGMs into an MDE network, we introduce PhoMoNet, the first, to the best of our knowledge, end-to-end MDE network with single-pixel depth guidance. Experimental results show the effectiveness and superiority of PhoMoNet over state-of-the-art MDE net-works on synthetic and real-world datasets.(c) 2023 Optica Publishing Group
引用
收藏
页码:594 / 597
页数:4
相关论文
共 50 条
  • [31] The Monocular Depth Estimation Challenge
    Spencer, Jaime
    Qian, C. Stella
    Russell, Chris
    Hadfield, Simon
    Graf, Erich
    Adams, Wendy
    Schofield, Andrew J.
    Elder, James
    Bowden, Richard
    Cong, Heng
    Mattoccia, Stefano
    Poggi, Matteo
    Suri, Zeeshan Khan
    Tang, Yang
    Tosi, Fabio
    Wang, Hao
    Zhang, Youmin
    Zhang, Yusheng
    Zhao, Chaoqiang
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW), 2023, : 623 - 632
  • [32] Perceptual Monocular Depth Estimation
    Pan, Janice
    Bovik, Alan C.
    NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1205 - 1228
  • [33] Perceptual Monocular Depth Estimation
    Janice Pan
    Alan C. Bovik
    Neural Processing Letters, 2021, 53 : 1205 - 1228
  • [34] Monocular Depth Estimation Using Relative Depth Maps
    Lee, Jae-Han
    Kim, Chang-Su
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9721 - 9730
  • [35] Monocular Depth Estimation With Augmented Ordinal Depth Relationships
    Cao, Yuanzhouhan
    Zhao, Tianqi
    Xian, Ke
    Shen, Chunhua
    Cao, Zhiguo
    Xu, Shugong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (08) : 2674 - 2682
  • [36] CNNapsule: A Lightweight Network with Fusion Features for Monocular Depth Estimation
    Wang, Yinchu
    Zhu, Haijiang
    Liu, Mengze
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT I, 2021, 12891 : 507 - 518
  • [37] AFNet: Asymmetric fusion network for monocular panorama depth estimation
    Huang, Chengchao
    Shao, Feng
    Chen, Hangwei
    Mu, Baoyang
    Jiang, Qiuping
    DISPLAYS, 2024, 84
  • [38] A Study on the Generality of Neural Network Structures for Monocular Depth Estimation
    Bae, Jinwoo
    Hwang, Kyumin
    Im, Sunghoon
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (04) : 2224 - 2238
  • [39] LW-Net: A Lightweight Network for Monocular Depth Estimation
    Feng, Cheng
    Zhang, Congxuan
    Chen, Zhen
    Li, Ming
    Chen, Hao
    Fan, Bingbing
    IEEE ACCESS, 2020, 8 : 196287 - 196298
  • [40] DENAO: Monocular Depth Estimation Network With Auxiliary Optical Flow
    Chen, Jingyu
    Yang, Xin
    Jia, Qizeng
    Liao, Chunyuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (08) : 2598 - 2610