SpatioTemporal focus for skeleton-based action recognition

被引:41
|
作者
Wu, Liyu [1 ]
Zhang, Can [2 ]
Zou, Yuexian [1 ,3 ]
机构
[1] Peking Univ, Sch ECE, ADSPLAB, Shenzhen, Peoples R China
[2] Tencent Media Lab, Shenzhen, Peoples R China
[3] Peng Cheng Lab, Shenzhen, Peoples R China
关键词
Action recognition; Skeleton topology; Graph convolutional network;
D O I
10.1016/j.patcog.2022.109231
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph convolutional networks (GCNs) are widely adopted in skeleton-based action recognition due to their powerful ability to model data topology. We argue that the performance of recent proposed skeleton-based action recognition methods is limited by the following factors. First, the predefined graph structures are shared throughout the network, lacking the flexibility and capacity to model the multigrain semantic information. Second, the relations among the global joints are not fully exploited by the graph local convolution, which may lose the implicit joint relevance. For instance, actions such as running and waving are performed by the co-movement of body parts and joints, e.g. , legs and arms, however, they are located far away in physical connection. Inspired by the recent attention mechanism, we propose a multi-grain contextual focus module, termed MCF, to capture the action associated relation information from the body joints and parts. As a result, more explainable representations for different skeleton action sequences can be obtained by MCF. In this study, we follow the common practice that the dense sample strategy of the input skeleton sequences is adopted and this brings much redundancy since number of instances has nothing to do with actions. To reduce the redundancy, a temporal discrimination focus module, termed TDF, is developed to capture the local sensitive points of the temporal dynamics. MCF and TDF are integrated into the standard GCN network to form a unified architecture, named STF-Net. It is noted that STF-Net provides the capability to capture robust movement patterns from these skeleton topology structures, based on multi-grain context aggregation and temporal dependency. Extensive experimental results show that our STF-Net significantly achieves state-of-the-art results on three challenging benchmarks NTU-RGB+D 60, NTU-RGB+D 120, and Kinetics-Skeleton. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Skeleton-based Action Recognition with Graph Involution Network
    Tang, Zhihao
    Xia, Hailun
    Gao, Xinkai
    Gao, Feng
    Feng, Chunyan
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3348 - 3354
  • [32] Bootstrapped Representation Learning for Skeleton-Based Action Recognition
    Moliner, Olivier
    Huang, Sangxia
    Astrom, Kalle
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 4153 - 4163
  • [33] Convolutional relation network for skeleton-based action recognition
    Zhu, Jiagang
    Zou, Wei
    Zhu, Zheng
    Hu, Yiming
    NEUROCOMPUTING, 2019, 370 : 109 - 117
  • [34] Skeleton-based Action Recognition of People Handling Objects
    Kim, Sunoh
    Yun, Kimin
    Park, Jongyoul
    Choi, Jin Young
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 61 - 70
  • [35] SKELETON-BASED ACTION RECOGNITION WITH CONVOLUTIONAL NEURAL NETWORKS
    Li, Chao
    Zhong, Qiaoyong
    Xie, Di
    Pu, Shiliang
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2017,
  • [36] Memory Attention Networks for Skeleton-Based Action Recognition
    Li, Ce
    Xie, Chunyu
    Zhang, Baochang
    Han, Jungong
    Zhen, Xiantong
    Chen, Jie
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (09) : 4800 - 4814
  • [37] SkeleTR: Towards Skeleton-based Action Recognition in the Wild
    Duan, Haodong
    Xu, Mingze
    Shuai, Bing
    Modolo, Davide
    Tu, Zhuowen
    Tighe, Joseph
    Bergamo, Alessandro
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13588 - 13598
  • [38] Hypergraph Neural Network for Skeleton-Based Action Recognition
    Hao, Xiaoke
    Li, Jie
    Guo, Yingchun
    Jiang, Tao
    Yu, Ming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 2263 - 2275
  • [39] Memory Attention Networks for Skeleton-based Action Recognition
    Xie, Chunyu
    Li, Ce
    Zhang, Baochang
    Chen, Chen
    Han, Jungong
    Liu, Jianzhuang
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 1639 - 1645
  • [40] Pose Encoding for Robust Skeleton-Based Action Recognition
    Demisse, Girum G.
    Papadopoulos, Konstantinos
    Aouada, Djamila
    Ottersten, Bjorn
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 301 - 307