SpatioTemporal focus for skeleton-based action recognition

被引:41
|
作者
Wu, Liyu [1 ]
Zhang, Can [2 ]
Zou, Yuexian [1 ,3 ]
机构
[1] Peking Univ, Sch ECE, ADSPLAB, Shenzhen, Peoples R China
[2] Tencent Media Lab, Shenzhen, Peoples R China
[3] Peng Cheng Lab, Shenzhen, Peoples R China
关键词
Action recognition; Skeleton topology; Graph convolutional network;
D O I
10.1016/j.patcog.2022.109231
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph convolutional networks (GCNs) are widely adopted in skeleton-based action recognition due to their powerful ability to model data topology. We argue that the performance of recent proposed skeleton-based action recognition methods is limited by the following factors. First, the predefined graph structures are shared throughout the network, lacking the flexibility and capacity to model the multigrain semantic information. Second, the relations among the global joints are not fully exploited by the graph local convolution, which may lose the implicit joint relevance. For instance, actions such as running and waving are performed by the co-movement of body parts and joints, e.g. , legs and arms, however, they are located far away in physical connection. Inspired by the recent attention mechanism, we propose a multi-grain contextual focus module, termed MCF, to capture the action associated relation information from the body joints and parts. As a result, more explainable representations for different skeleton action sequences can be obtained by MCF. In this study, we follow the common practice that the dense sample strategy of the input skeleton sequences is adopted and this brings much redundancy since number of instances has nothing to do with actions. To reduce the redundancy, a temporal discrimination focus module, termed TDF, is developed to capture the local sensitive points of the temporal dynamics. MCF and TDF are integrated into the standard GCN network to form a unified architecture, named STF-Net. It is noted that STF-Net provides the capability to capture robust movement patterns from these skeleton topology structures, based on multi-grain context aggregation and temporal dependency. Extensive experimental results show that our STF-Net significantly achieves state-of-the-art results on three challenging benchmarks NTU-RGB+D 60, NTU-RGB+D 120, and Kinetics-Skeleton. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Spatiotemporal Fusion Network For Skeleton-Based Action Recognition
    Bao, Wenxia
    Wang, Junyi
    Yang, Xianjun
    Chen, Hemu
    2024 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MEDIA COMPUTING, ICIPMC 2024, 2024, : 347 - 352
  • [2] Joint Spatiotemporal Collaborative Relationship Network for Skeleton-Based Action Recognition
    Lu, Hao
    Wang, Tingwei
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 775 - 786
  • [3] KEY JOINTS SELECTION AND SPATIOTEMPORAL MINING FOR SKELETON-BASED ACTION RECOGNITION
    Wang, Zhikai
    Zhang, Chongyang
    Luo, Wu
    Lin, Weiyao
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3458 - 3462
  • [4] Adaptive Spatiotemporal Representation Learning for Skeleton-Based Human Action Recognition
    Yu, Jiahui
    Gao, Hongwei
    Chen, Yongquan
    Zhou, Dalin
    Liu, Jinguo
    Ju, Zhaojie
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (04) : 1654 - 1665
  • [5] Spatiotemporal Graph Autoencoder Network for Skeleton-Based Human Action Recognition
    Abduljalil, Hosam
    Elhayek, Ahmed
    Marish Ali, Abdullah
    Alsolami, Fawaz
    AI, 2024, 5 (03) : 1695 - 1708
  • [6] Multi-grained clip focus for skeleton-based action recognition
    Qiu, Helei
    Hou, Biao
    PATTERN RECOGNITION, 2024, 148
  • [7] Revisiting Skeleton-based Action Recognition
    Duan, Haodong
    Zhao, Yue
    Chen, Kai
    Lin, Dahua
    Dai, Bo
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2959 - 2968
  • [8] Cross-Scale Spatiotemporal Refinement Learning for Skeleton-Based Action Recognition
    Zhang, Yu
    Sun, Zhonghua
    Dai, Meng
    Feng, Jinchao
    Jia, Kebin
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 441 - 445
  • [9] SPATIOTEMPORAL-SPECTRAL GRAPH CONVOLUTIONAL NETWORKS FOR SKELETON-BASED ACTION RECOGNITION
    Chen, Shuo
    Xu, Ke
    Jiang, Xinghao
    Sun, Tanfeng
    2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,
  • [10] RELATIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zheng, Wu
    Li, Lin
    Zhang, Zhaoxiang
    Huang, Yan
    Wang, Liang
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 826 - 831