FeNi3 nanoparticles for electrocatalytic synthesis of urea from carbon dioxide and nitrate

被引:37
|
作者
Hou, Tong [1 ,2 ,3 ]
Ding, Junyang [4 ]
Zhang, Hao [4 ]
Chen, Shanshan [4 ]
Liu, Qian [5 ]
Luo, Jun [6 ]
Liu, Xijun [1 ,2 ,3 ]
机构
[1] Sch Resource, MOE Key Lab New Proc Technol Nonferrous Met & Mat, Environm & Mat, Nanning 530004, Peoples R China
[2] Sch Resource, Guangxi Key Lab Proc Nonferrous Met & Featured Mat, Nanning 530004, Peoples R China
[3] Guangxi Univ, Sch Chem & Chem Engn, Guangxi Key Lab Electrochem Energy Mat, 100 Daxue Rd, Nanning 530004, Peoples R China
[4] Tianjin Univ Technol, Inst New Energy Mat & Low Carbon Technol, Sch Mat Sci & Engn, Tianjin 300384, Peoples R China
[5] Chengdu Univ, Inst Adv Study, Chengdu 610106, Sichuan, Peoples R China
[6] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, ShenSi Lab, Shenzhen 518110, Peoples R China
基金
中国国家自然科学基金;
关键词
REDUCTION;
D O I
10.1039/d3qm00627a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Due to the environmental pollution and high energy consumption associated with the conventional industrial Bosch-Meiser method, electrocatalytic urea synthesis emerges as a promising and sustainable alternative route. In this work, we constructed and utilized nitrogen-doped porous carbon loaded with bimetallic FeNi3 alloy nanoparticles as an efficient electrocatalyst for synthesizing urea from carbon dioxide (CO2) and nitrate (NO3-). The created FeNi3 alloy within FeNi/NC served as the active site for the C-N coupling reaction, generating a higher urea yield of 496.5 & mu;g h(-1) mg(cat.)(-1) with a correlating faradaic efficiency (FE) of 16.58% at -0.9 V versus the reversible hydrogen electrode (vs. RHE), when in comparison to monometallic Fe/NC and Ni/NC catalysts. Moreover, we also monitored the urea generation process via in situ Raman spectroscopy technology, which enabled the identification of two critical reaction species, namely O-C-O and N-C-N, inferring that C-N coupling acted as the key reaction step.
引用
收藏
页码:4952 / 4960
页数:9
相关论文
共 50 条
  • [41] Annealing influence on the magnetic and thermal stability of FeNi3 nanoparticles for magnetic hyperthermia applications
    Dev, Kapil
    Kadian, Ankit
    Manikandan, V.
    Pant, Megha
    Mahapatro, Ajit K.
    Annapoorni, S.
    MATERIALS TODAY COMMUNICATIONS, 2025, 43
  • [42] Copper with an atomic-scale spacing for efficient electrocatalytic co-reduction of carbon dioxide and nitrate to urea
    Shin, Seokmin
    Sultan, Siraj
    Chen, Zong-Xian
    Lee, Hojeong
    Choi, Hansaem
    Wi, Tae-Ung
    Park, Changhyun
    Kim, Taewon
    Lee, Chanhee
    Jeong, Jihong
    Shin, Hyeju
    Kim, Tae-Hee
    Ju, Hyungkuk
    Yoon, Hyung Chul
    Song, Hyun-Kon
    Lee, Hyun-Wook
    Cheng, Mu-Jeng
    Kwon, Youngkook
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (05) : 2003 - 2013
  • [43] Bulk Synthesis of Monodisperse Magnetic FeNi3 Nanopowders by Flow Levitation Method
    Chen, Shanjun
    Chen, Yan
    Kang, Xiaoli
    Li, Song
    Tian, Yonghong
    Wu, Weidong
    Tang, Yongjian
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (10) : 6906 - 6909
  • [44] One‐step hydrothermal synthesis of the FeNi3/rGO composite for electrochemical supercapacitor
    Ligang Cheng
    Qingwei Wang
    Juan Ding
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 7226 - 7236
  • [45] Atomic Defects Engineering Boosts Urea Synthesis toward Carbon Dioxide and Nitrate Coelectroreduction
    Xu, Zifan
    Yang, Zhengwu
    Lu, Huan
    Zhu, Jiangchen
    Li, Junlin
    Fan, Ming-Hui
    Zhao, Zhi
    Kong, Xiangdong
    Wang, Ke
    Geng, Zhigang
    NANO LETTERS, 2024, 24 (37) : 11730 - 11737
  • [46] Magnetic Nanocomposites Formed by FeNi3 Nanoparticles Embedded in Graphene. Application as Supercapacitors
    Abellan, Gonzalo
    Coronado, Eugenio
    Marti-Gastaldo, Carlos
    Ribera, Antonio
    Otero, Toribio F.
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2013, 30 (10) : 853 - 863
  • [47] Complex permeability of FeNi3/SiO2 core-shell nanoparticles
    Tang, NJ
    Zhong, W
    Jiang, HY
    Han, ZD
    Zou, WQ
    Du, YW
    SOLID STATE COMMUNICATIONS, 2004, 132 (02) : 71 - 74
  • [48] Heat of formation of FeNi70, FeNi73.5 and FeNi80 ordered alloys from the homogenous region of the FeNi3 phase
    Gasior, W.
    Moser, Z.
    Debski, A.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 487 (1-2) : 132 - 137
  • [49] FeNi3 and Ni-Based Nanoparticles as Electrocatalysts for Magnetically Enhanced Alkaline Water Electrolysis
    Gatard, Vivien
    De Masi, Deborah
    Chattot, Raphael
    Marin, Irene Mustieles
    Revert, Juan Manuel Asensio
    Fazzini, Pier-Francesco
    Encinas, Thierry
    Martin, Vincent
    Faure, Stephane
    Deseure, Jonathan
    Carrey, Julian
    Chaudret, Bruno
    Chatenet, Marian
    ELECTROCATALYSIS, 2021, 11 (05) : 567 - 577
  • [50] Synthesis of FeNi3 nanocrystals encapsulated in carbon nanospheres/reduced graphene oxide as a light weight electromagnetic wave absorbent
    Ding, Xiao
    Huang, Ying
    Wang, Jianguo
    RSC ADVANCES, 2015, 5 (80) : 64878 - 64885