Diffraction grating with varying slit width: Quasi-periodic homogenization and its numerical implementation

被引:5
|
作者
Pham, Kim [1 ]
Lebbe, Nicolas [2 ]
Maurel, Agnes [2 ]
机构
[1] Inst Polytech Paris, IMSIA, CNRS, EDF,CNRS,ENSTA Paris, 828 Bd Marechaux, F-91732 Palaiseau, France
[2] PSL Univ, Inst Langevin, ESPCI Paris, CNRS, 1 rue Jussieu, F-75005 Paris, France
关键词
Diffraction grating; Interface homogenization; Quasi -periodic homogenization; Numerical multimodal methods; WAVE-PROPAGATION;
D O I
10.1016/j.jcp.2022.111727
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the diffraction of acoustic waves by thin grating with varying slit width. Using quasi-periodic homogenization, we derive an effective model in which the grating is replaced by effective jump conditions with effective parameters varying along the equivalent interface. The numerical implementations of the actual problem and of its homogenized counterpart are achieved using multimodal methods for a periodic grating with a macro-period containing many slits with varying widths. The ability of the effective grating to reproduce the scattering properties of the actual one is inspected and discussed. (c) 2022 Elsevier Inc. All rights reserved.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [31] QUASI-PERIODIC WAVES AND QUASI-SOLITARY WAVES IN STRATIFIED FLUID OF SLOWLY VARYING DEPTH
    朱勇
    戴世强
    Applied Mathematics and Mechanics(English Edition), 1989, (03) : 213 - 220
  • [32] X-RAY-DIFFRACTION STUDIES OF PERIODIC AND QUASI-PERIODIC SIGE/SI SUPERLATTICE STRUCTURES
    BARNETT, SJ
    HOUGHTON, DC
    PITT, AD
    BARIBEAU, JM
    INSTITUTE OF PHYSICS CONFERENCE SERIES, 1991, (117): : 665 - 668
  • [33] CONTRAST VARIATION EFFECTS ON NEUTRON-DIFFRACTION PATTERNS WITH QUASI-PERIODIC STRUCTURES
    JANOT, C
    PANNETIER, J
    DEBOISSIEU, M
    DUBOIS, JM
    EUROPHYSICS LETTERS, 1987, 3 (09): : 995 - 1000
  • [34] SURVEY OF NUMERICAL METHODS FOR COMPUTING QUASI-PERIODIC INVARIANT TORI IN ASTRODYNAMICS
    Baresi, Nicola
    Olikara, Zubin
    Scheeres, Daniel J.
    SPACEFLIGHT MECHANICS 2016, PTS I-IV, 2016, 158 : 711 - 732
  • [35] A meshless numerical method for time harmonic quasi-periodic scattering problem
    Luan, Tian
    Sun, Yao
    Zhuang, Zibo
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 104 : 320 - 331
  • [36] DIFFRACTION OF X-RAYS BY QUASI-PERIODIC ALAS/GAAS MULTILAYERED STRUCTURES
    TAPFER, L
    NAGLE, J
    PLOOG, K
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1988, 182 (1-4): : 256 - 257
  • [37] Quantitative reducibility of Gevrey quasi-periodic cocycles and its applications
    Li, Xianzhe
    NONLINEARITY, 2022, 35 (12) : 6124 - 6155
  • [38] Near-field diffraction from quasi-periodic structures in the THz regime
    Dettlaff, K. M.
    Mavrona, E.
    Zolliker, P.
    Hack, E.
    2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022), 2022,
  • [39] NUMERICAL-ANALYSIS OF QUASI-PERIODIC PERTURBATIONS FOR THE ALFVEN-WAVE
    YAMAKOSHI, Y
    MUTO, K
    YOSHIDA, Z
    PHYSICAL REVIEW E, 1994, 50 (02): : 1437 - 1443
  • [40] Invariant curves of quasi-periodic reversible mappings and its application
    Zhuang, Yan
    Piao, Daxiong
    Niu, Yanmin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 374 : 191 - 217