Dissipationless layertronics in axion insulator MnBi2Te4

被引:7
|
作者
Li, Shuai [1 ,2 ]
Gong, Ming [3 ]
Cheng, Shuguang [4 ]
Jiang, Hua [2 ,5 ]
Xie, X. C. [3 ,5 ,6 ]
机构
[1] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[2] Soochow Univ, Inst Adv Study, Suzhou 215006, Peoples R China
[3] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[4] Northwest Univ, Dept Phys, Xian 710069, Peoples R China
[5] Fudan Univ, Interdisciplinary Ctr Theoret Phys & Informat Sci, Shanghai 200433, Peoples R China
[6] Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
axion insulator MnBi2Te4; layertronics; antiferromagnetic domain wall; dissipationless transport; TOPOLOGICAL INSULATORS; SPIN PRECESSION; VALLEY VALVE; GRAPHENE; FILTER; SPINTRONICS; TRANSPORT;
D O I
10.1093/nsr/nwad262
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Surface electrons in axion insulators are endowed with a topological layer degree of freedom followed by exotic transport phenomena, e.g., the layer Hall effect. Here, we propose that such a layer degree of freedom can be manipulated in a dissipationless way based on the antiferromagnetic MnBi2Te4 with tailored domain structure. This makes MnBi2Te4 a versatile platform to exploit the 'layertronics' to encode, process and store information. Importantly, the layer filter, layer valve and layer reverser devices can be achieved using the layer-locked chiral domain wall modes. The dissipationless nature of the domain wall modes makes the performance of the layertronic devices superior to those in spintronics and valleytronics. Specifically, the layer reverser, a layer version of the Datta-Das transistor, also fills up the blank in designing the valley reverser in valleytronics. Our work sheds light on constructing new generation electronic devices with high performance and low-energy consumption in the framework of layertronics.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Giant nonlocal edge conduction in the axion insulator state of MnBi2Te4
    Li, Yaoxin
    Liu, Chang
    Wang, Yongchao
    Lian, Zichen
    Li, Shuai
    Li, Hao
    Wu, Yang
    Lu, Hai-Zhou
    Zhang, Jinsong
    Wang, Yayu
    SCIENCE BULLETIN, 2023, 68 (12) : 1252 - 1258
  • [2] Topological Axion States in the Magnetic Insulator MnBi2Te4 with the Quantized Magnetoelectric Effect
    Zhang, Dongqin
    Shi, Minji
    Zhu, Tongshuai
    Xing, Dingyu
    Zhang, Haijun
    Wang, Jing
    PHYSICAL REVIEW LETTERS, 2019, 122 (20)
  • [3] Identifying axion insulator by quantized magnetoelectric effect in antiferromagnetic MnBi2Te4 tunnel junction
    Li, Yu-Hang
    Cheng, Ran
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [4] Dirac Gap Opening and Modifying Mechanism in an Axion Antiferromagnetic Topological Insulator MnBi2Te4
    Shikin, A. M.
    PHYSICS OF THE SOLID STATE, 2020, 62 (08) : 1460 - 1468
  • [5] Dirac Gap Opening and Modifying Mechanism in an Axion Antiferromagnetic Topological Insulator MnBi2Te4
    A. M. Shikin
    Physics of the Solid State, 2020, 62 : 1460 - 1468
  • [6] Progress on the antiferromagnetic topological insulator MnBi2Te4
    Shuai Li
    Tianyu Liu
    Chang Liu
    Yayu Wang
    Hai-Zhou Lu
    X.C.Xie
    National Science Review, 2024, 11 (02) : 33 - 49
  • [7] Progress on the antiferromagnetic topological insulator MnBi2Te4
    Li, Shuai
    Liu, Tianyu
    Liu, Chang
    Wang, Yayu
    Lu, Hai-Zhou
    Xie, X. C.
    NATIONAL SCIENCE REVIEW, 2024, 11 (02)
  • [8] Routes to realize the axion-insulator phase in MnBi2Te4(Bi2Te3)n family
    Zhao, Yufei
    Liu, Qihang
    APPLIED PHYSICS LETTERS, 2021, 119 (06)
  • [9] Picosecond Ultrasonics in Magnetic Topological Insulator MnBi2Te4
    Fonseca, Jordan
    Diederich, Geoffrey M.
    Ovchinnikov, Dmitry
    Yan, Jiaqiang
    Xiao, Di
    Xu, Xiaodong
    NANO LETTERS, 2024, 24 (34) : 10562 - 10568
  • [10] Growth and Characterization of MnBi2Te4 Magnetic Topological Insulator
    Saxena, A.
    Rani, P.
    Nagpal, V.
    Patnaik, S.
    Awana, V. P. S.
    3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER & APPLIED PHYSICS (ICC-2019), 2020, 2220