EFFICIENT ALGEBRAIC TWO-LEVEL SCHWARZ PRECONDITIONER FOR SPARSE MATRICES

被引:1
|
作者
Al Daas, Hussam [1 ]
Jolivet, Pierre
Rees, Tyrone [1 ,2 ]
机构
[1] Rutherford Appleton Lab, STFC, Harwell Campus, Didcot OX11 0QX, Oxon, England
[2] Sorbonne Univ, CNRS, LIP6, F-75252 Paris 05, France
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2023年 / 45卷 / 03期
关键词
algebraic domain decomposition; sparse linear systems; Schwarz preconditioner; diagonally dominant matrices; DOMAIN DECOMPOSITION PRECONDITIONER; COARSE SPACES; FETI-DP; SYSTEMS;
D O I
10.1137/22M1469833
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Domain decomposition methods are among the most efficient for solving sparse linear systems of equations. Their effectiveness relies on a judiciously chosen coarse space. Originally introduced and theoretically proved to be efficient for self-adjoint operators, spectral coarse spaces have been proposed in the past few years for indefinite and non-self-adjoint operators. This paper presents a new spectral coarse space that can be constructed in a fully algebraic way unlike most existing spectral coarse spaces. We present theoretical convergence results for Hermitian positive definite diagonally dominant matrices. Numerical experiments and comparison against state-of-the-art preconditioners in the multigrid community show that the resulting two-level Schwarz preconditioner is efficient especially for non-self-adjoint operators. Furthermore, in this case, our proposed preconditioner outperforms state-of-the-art preconditioners.
引用
收藏
页码:A1199 / A1213
页数:15
相关论文
共 50 条
  • [31] Parallel subdomain solver strategies for the algebraic additive Schwarz preconditioner
    Popescu, Radu
    Heroux, Michael A.
    Deparis, Simone
    PARALLEL COMPUTING, 2016, 57 : 137 - 153
  • [32] Restricted additive Schwarz preconditioner for general sparse linear systems
    Cai, Xiao-Chuan
    Sarkis, Marcus
    SIAM Journal on Scientific Computing, 21 (02): : 792 - 797
  • [33] A restricted additive Schwarz preconditioner for general sparse linear systems
    Cai, XC
    Sarkis, M
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 792 - 797
  • [34] Sparse LMS algorithm for two-level DSTATCOM
    Mangaraj, Mrutyunjaya
    Panda, Anup Kumar
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2021, 15 (01) : 86 - 96
  • [35] LEARNING SPARSE TWO-LEVEL BOOLEAN RULES
    Su, Guolong
    Wei, Dennis
    Varshney, Kush R.
    Malioutov, Dmitry M.
    2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,
  • [36] Two-level Schwarz Methods for Hybridizable Discontinuous Galerkin Methods
    Peipei Lu
    Andreas Rupp
    Guido Kanschat
    Journal of Scientific Computing, 2023, 95
  • [37] A two-level preconditioner for Schrodinger-type singular elliptic operator
    Maliassov, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) : 217 - 229
  • [38] Domain decomposition method of stochastic PDEs: a two-level scalable preconditioner
    Subber, Waad
    Sarkar, Abhijit
    HIGH PERFORMANCE COMPUTING SYMPOSIUM 2011, 2012, 341
  • [39] Two-level Schwarz Methods for Hybridizable Discontinuous Galerkin Methods
    Lu, Peipei
    Rupp, Andreas
    Kanschat, Guido
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (01)
  • [40] A two-level preconditioner for schrodinger-type singular elliptic operator
    Institute for Scientific Computation, Texas A and M University, 505 Blocker Bldg, College Station, TX 77843-3404, United States
    SIAM J Numer Anal, 1 (217-229):