Accelerating material design with the generative toolkit for scientific discovery

被引:19
|
作者
Manica, Matteo [1 ]
Born, Jannis [1 ]
Cadow, Joris [1 ]
Christofidellis, Dimitrios [1 ]
Dave, Ashish [2 ]
Clarke, Dean [2 ]
Teukam, Yves Gaetan Nana [1 ]
Giannone, Giorgio [1 ]
Hoffman, Samuel C. [3 ]
Buchan, Matthew [2 ]
Chenthamarakshan, Vijil [3 ]
Donovan, Timothy [2 ]
Hsu, Hsiang Han [4 ]
Zipoli, Federico [1 ]
Schilter, Oliver [1 ]
Kishimoto, Akihiro [4 ]
Hamada, Lisa [4 ]
Padhi, Inkit [3 ]
Wehden, Karl [3 ]
McHugh, Lauren [3 ]
Khrabrov, Alexy [5 ]
Das, Payel [3 ]
Takeda, Seiji [4 ]
Smith, John R. [3 ]
机构
[1] IBM Res Europe Zurich, Ruschlikon, Switzerland
[2] IBM Res UK, Hursley, England
[3] IBM Res Yorktown Hts, New York, NY USA
[4] IBM Res Tokyo, Tokyo, Japan
[5] IBM Res Almaden, San Jose, CA USA
关键词
DEEP; DDR1;
D O I
10.1038/s41524-023-01028-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the growing availability of data within various scientific domains, generative models hold enormous potential to accelerate scientific discovery. They harness powerful representations learned from datasets to speed up the formulation of novel hypotheses with the potential to impact material discovery broadly. We present the Generative Toolkit for Scientific Discovery (GT4SD). This extensible open-source library enables scientists, developers, and researchers to train and use state-of-the-art generative models to accelerate scientific discovery focused on organic material design.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Generative adversarial networks and diffusion models in material discovery
    Alverson, Michael
    Baird, Sterling G.
    Murdock, Ryan
    Ho, Sin-Hang
    Johnson, Jeremy
    Sparks, Taylor D.
    DIGITAL DISCOVERY, 2024, 3 (01): : 62 - 80
  • [22] Neural operators for accelerating scientific simulations and design
    Azizzadenesheli, Kamyar
    Kovachki, Nikola
    Li, Zongyi
    Liu-Schiaffini, Miguel
    Kossaifi, Jean
    Anandkumar, Anima
    NATURE REVIEWS PHYSICS, 2024, 6 (05) : 320 - 328
  • [23] Accelerating materials discovery and design for extreme environments
    Afful, Henry Quansah
    MRS BULLETIN, 2023, 48 (08) : 865 - 867
  • [24] Accelerating materials discovery and design for extreme environments
    Henry Quansah Afful
    MRS Bulletin, 2023, 48 : 865 - 867
  • [25] THE RISE - MATERIAL BEHAVIOUR IN GENERATIVE DESIGN
    Tamke, Martin
    Stasiuk, David
    Thomsen, Mette Ramsgard
    ACADIA 2013: ADAPTIVE ARCHITECTURE, 2013, : 379 - 387
  • [26] A Generative Approach to Materials Discovery, Design, and Optimization
    Menon, Dhruv
    Ranganathan, Raghavan
    ACS OMEGA, 2022, 7 (30): : 25958 - 25973
  • [27] Supporting Designers in the Sharing Economy Through a Generative Design Cards Toolkit
    Fedosov, Anton
    Subasi, Ozge
    Ochsenbein, Lisa
    Huang, Elaine
    PROCEEDINGS OF THE 14TH CREATIVITY AND COGNITION, C&C 2022, 2022, : 498 - 504
  • [28] Capturing and harnessing chemical knowledge: Accelerating the rate of scientific discovery.
    Hull, RD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U296 - U296
  • [29] Author Correction: Accelerating discovery of bioactive ligands with pharmacophore-informed generative models
    Weixin Xie
    Jianhang Zhang
    Qin Xie
    Chaojun Gong
    Yuhao Ren
    Jin Xie
    Qi Sun
    Youjun Xu
    Luhua Lai
    Jianfeng Pei
    Nature Communications, 16 (1)
  • [30] pyMPEALab Toolkit for Accelerating Phase Design in Multi-principal Element Alloys
    Subedi, Upadesh
    Kunwar, Anil
    Coutinho, Yuri Amorim
    Gyanwali, Khem
    METALS AND MATERIALS INTERNATIONAL, 2022, 28 (01) : 269 - 281