Reinforcement learning in medical image analysis: Concepts, applications, challenges, and future directions

被引:33
|
作者
Hu, Mingzhe [1 ,2 ]
Zhang, Jiahan [1 ]
Matkovic, Luke [1 ]
Liu, Tian [1 ]
Yang, Xiaofeng [1 ,2 ,3 ]
机构
[1] Emory Univ, Sch Med, Dept Radiat Oncol, Atlanta, GA USA
[2] Emory Univ, Dept Comp Sci & Informat, Atlanta, GA USA
[3] Emory Univ, Sch Med, Dept Radiat Oncol, 1365 Clifton Rd NE, Atlanta, GA 30322 USA
来源
基金
美国国家卫生研究院;
关键词
reinforcement learning; AGENT;
D O I
10.1002/acm2.13898
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
MotivationMedical image analysis involves a series of tasks used to assist physicians in qualitative and quantitative analyses of lesions or anatomical structures which can significantly improve the accuracy and reliability of medical diagnoses and prognoses. Traditionally, these tedious tasks were finished by experienced physicians or medical physicists and were marred with two major problems, low efficiency and bias.In the past decade, many machine learning methods have been applied to accelerate and automate the image analysis process. Compared to the enormous deployments of supervised and unsupervised learning models, attempts to use reinforcement learning in medical image analysis are still scarce. We hope that this review article could serve as the stepping stone for related research in the future. SignificanceWe found that although reinforcement learning has gradually gained momentum in recent years, many researchers in the medical analysis field still find it hard to understand and deploy in clinical settings. One possible cause is a lack of well-organized review articles intended for readers without professional computer science backgrounds. Rather than to provide a comprehensive list of all reinforcement learning models applied in medical image analysis, the aim of this review is to help the readers formulate and solve their medical image analysis research through the lens of reinforcement learning. Approach & ResultsWe selected published articles from Google Scholar and PubMed. Considering the scarcity of related articles, we also included some outstanding newest preprints. The papers were carefully reviewed and categorized according to the type of image analysis task. In this article, we first reviewed the basic concepts and popular models of reinforcement learning. Then, we explored the applications of reinforcement learning models in medical image analysis. Finally, we concluded the article by discussing the reviewed reinforcement learning approaches' limitations and possible future improvements.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Automated Machine Learning in Dentistry: A Narrative Review of Applications, Challenges, and Future Directions
    Shujaat, Sohaib
    DIAGNOSTICS, 2025, 15 (03)
  • [32] Potential, challenges and future directions for deep learning in prognostics and health management applications
    Fink, Olga
    Wang, Qin
    Svensen, Markus
    Dersin, Pierre
    Lee, Wan-Jui
    Ducoffe, Melanie
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 92
  • [33] Machine and Deep Learning for IoT Security and Privacy: Applications, Challenges, and Future Directions
    Bharati, Subrato
    Podder, Prajoy
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [34] Probing Renal Microstructure and Function with Advanced Diffusion MRI: Concepts, Applications, Challenges, and Future Directions
    Stabinska, Julia
    Wittsack, Hans-Joerg
    Lerman, Lilach O.
    Ljimani, Alexandra
    Sigmund, Eric E.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 60 (04) : 1259 - 1277
  • [35] A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions
    Bharti Khemani
    Shruti Patil
    Ketan Kotecha
    Sudeep Tanwar
    Journal of Big Data, 11
  • [36] A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions
    Khemani, Bharti
    Patil, Shruti
    Kotecha, Ketan
    Tanwar, Sudeep
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [37] Metaverse in Healthcare: Applications, Challenges, and Future Directions
    Musamih, Ahmad
    Yaqoob, Ibrar
    Salah, Khaled
    Jayaraman, Raja
    Al-Hammadi, Yousof
    Omar, Mohammed
    Ellahham, Samer
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2023, 12 (04) : 33 - 46
  • [38] Edge Intelligence: Concepts, Architectures, Applications, and Future Directions
    Mendez, Javier
    Bierzynski, Kay
    Cuellar, M. P.
    Morales, Diego P.
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2022, 21 (05)
  • [39] Internet of Things 2.0: Concepts, Applications, and Future Directions
    Zhou, Ian
    Makhdoom, Imran
    Shariati, Negin
    Raza, Muhammad Ahmad
    Keshavarz, Rasool
    Lipman, Justin
    Abolhasan, Mehran
    Jamalipour, Abbas
    IEEE ACCESS, 2021, 9 : 70961 - 71012
  • [40] Applications of ROC Analysis in Medical Research: Recent Developments and Future Directions
    Alemayehu, Demissie
    Zou, Kelly H.
    ACADEMIC RADIOLOGY, 2012, 19 (12) : 1457 - 1464