Lattice points in stretched finite type domains

被引:0
|
作者
Guo, Jingwei [1 ]
Jiang, Tao [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
关键词
Lattice points; Finite type domains; Optimal stretching; CONVEX HYPERSURFACES; RIESZ MEANS; EIGENVALUES; LAPLACIAN; CUBOIDS;
D O I
10.1016/j.jnt.2022.07.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an optimal stretching problem, which is a variant lattice point problem, for convex domains in Rd (d >= 2) with smooth boundary of finite type that are symmetric with respect to each coordinate hyperplane/axis. We prove that optimal domains which contain the most positive (or least nonnegative) lattice points are asymptotically balanced. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条