Propagation dynamics of cooperative reaction-diffusion systems in a periodic shifting environment

被引:5
|
作者
Hou, Tian [1 ,2 ]
Wang, Yi [1 ]
Zhao, Xiao-Qiang [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Reaction-diffusion systems; A shifting environment; Spreading properties; Periodic forced waves; Global attractivity; FISHER-KPP EQUATION; TRAVELING-WAVES; MONOTONE SEMIFLOWS; NONLOCAL DISPERSAL; ASYMPTOTIC SPEEDS; CLIMATE-CHANGE; SPREAD; MODEL; PERSISTENCE; COMPETITION;
D O I
10.1016/j.jde.2023.10.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of propagation dynamics for a large class of nonautonomous cooperative reaction-diffusion systems in a time-periodic shifting environment. We first establish the spreading properties of solutions and the existence of forced time-periodic waves for such a system by appealing to the abstract theory developed for monotone semiflows with asymptotic translation invariance. Then we prove the uniqueness of the forced wave and its attractivity under appropriate conditions. Finally, we apply our analytical results to a reaction-diffusion-advection model of malaria transmission. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:468 / 496
页数:29
相关论文
共 50 条
  • [41] Propagation dynamics for a reaction-diffusion system with nonlinear competition
    Ma, Manjun
    Chen, Yangwei
    Han, Yazhou
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 81
  • [42] PERIODIC-SOLUTIONS TO SYSTEMS OF REACTION-DIFFUSION EQUATIONS
    ROSEN, G
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1976, 301 (03): : 307 - 312
  • [43] THE PRINCIPAL EIGENVALUE FOR DEGENERATE PERIODIC REACTION-DIFFUSION SYSTEMS
    Liang, Xing
    Zhang, Lei
    Zhao, Xiao-Qiang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (05) : 3603 - 3636
  • [44] A reaction-diffusion SIS epidemic model in an almost periodic environment
    Wang, Bin-Guo
    Li, Wan-Tong
    Wang, Zhi-Cheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3085 - 3108
  • [45] Wavefront propagation for reaction-diffusion systems and backward SDES
    Pradeilles, F
    ANNALS OF PROBABILITY, 1998, 26 (04): : 1575 - 1613
  • [46] THE EXISTENCE OF PERIODIC-SOLUTIONS TO REACTION-DIFFUSION SYSTEMS WITH PERIODIC DATA
    MORGAN, JJ
    HOLLIS, SL
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (05) : 1225 - 1232
  • [47] On global dynamics of reaction-diffusion systems at resonance
    Kokocki, Piotr
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
  • [48] On the speed of propagation in Turing patterns for reaction-diffusion systems
    Klika, Vaclav
    Gaffney, Eamonn A.
    Maini, Philip K.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 467
  • [49] New effects in propagation of waves for reaction-diffusion systems
    Vakulenko, S
    Volpert, V
    ASYMPTOTIC ANALYSIS, 2004, 38 (01) : 11 - 33
  • [50] Front propagation and blocking of reaction-diffusion systems in cylinders
    Guo, Hongjun
    Forbey, Jennifer
    Liu, Rongsong
    NONLINEARITY, 2021, 34 (10) : 6750 - 6772