Estimations of potential evapotranspiration from CMIP6 multi-model ensemble over Africa

被引:2
|
作者
Yahaya, Ibrahim [1 ,2 ]
Li, Zhenjie [1 ,3 ]
Zhou, Jian [1 ]
Jiang, Shan [1 ]
Su, Buda [1 ]
Huang, Jinlong [1 ]
Xu, Runhong [4 ]
Havea, Peni Hausia [1 ]
Jiang, Tong [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Inst Disaster Risk Management, Sch Geog Sci, Nanjing 210044, Peoples R China
[2] Gombe State Univ, Dept Geog, PMB 127, Gombe, Gombe, Nigeria
[3] Lincang Meteorol Bur, Lincang 677099, Yunnan, Peoples R China
[4] Qinghai Normal Univ, Sch Geog Sci, Xining 810008, Peoples R China
基金
美国国家科学基金会;
关键词
Potential evapotranspiration; CMIP6; SSPs; Climate change; Africa; CHANGE IMPACT ANALYSIS; CLIMATE; TRENDS; MODEL; SENSITIVITY; WATER; ZONE; SOIL;
D O I
10.1016/j.atmosres.2024.107255
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Potential evapotranspiration (PET) plays a pivotal role in resource management and drought assessment. However, future PET estimates remain underexplored in the African region. This study employs twenty General Circulation Models (GCMs) to estimate past (1979-2014) and future PET changes across near -term (2021-2040), mid-term (2061-2080), and long-term (2081-2100) periods, considering four Shared Socioeconomic Pathways (SSPs) including SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The research assesses the impact of various climatic factors on PET across Africa and its sub -regions using the Penman -Monteith model. The analysis reveals that Penman -Monteith estimates for PET during 1979-2014 exhibit an increase of 0.68 mm per year (mm/a) across Africa. Notably, the Northern region (NAF), Sahara (SAH), Southern region (SAF), and Eastern region (EAF) experience higher PET changes of 1.78 mm/a, 1.75 mm/a, 1.09 mm/a, and 0.12 mm/a, respectively. Conversely, the Western region (WAF) and Central region (CAF) exhibit negative trends of -0.03 mm/a, and0.28 mm/a. Future PET in whole Africa is projected to increase by 0.05 mm/a in SSP1-2.6 and SSP2-4.5, and 0.07 mm/a in higher emissions for 2021-2040, by 0.02 mm/an under SSP1-2.6, 0.07 in SSP2-4.5, 0.09 mm/a, and 0.16 mm/a, in SSP3-7.0 and SSP5-8.5 for 2061-2080, and by -0.01 mm/a in SSP1-2.6, 0.05 mm/a SSP2-4.5, 0.10 mm/a SSP3-7.0, and 0.18 mm/a SSP5-8.5 for 2081-2100. Furthermore, higher emissions are anticipated to drive PET increases in various regions during 2081-2100, with NAF, SAH, and SAF projected to rise by 0.17 mm/a, 0.16 mm/a, and 0.23 mm/a, respectively. WAF, CAF, and EAF are expected to experience increases of 0.20 mm/a, 0.19 mm/a, and 0.15 mm/a, respectively. Contribution analysis indicates that solar radiation played a major factor in PET over Africa as well as in WAF, CAF, and EAF. Maximum temperatures were pivotal in NAF, SAH, and SAF. In future periods (2021-2040, 2061-2080, and 2081-2100), maximum temperatures take precedence to Africa's PET, and at varying percentages to different sub -regions. The findings underscore the significance of PET estimation, particularly in the context of drought evaluation locally and regionally.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Multi-model and multi-sensor estimations of evapotranspiration over the Volta Basin, West Africa
    Andam-Akorful, S. A.
    Ferreira, V. G.
    Awange, J. L.
    Forootan, E.
    He, X. F.
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2015, 35 (10) : 3132 - 3145
  • [22] Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis
    Dutta, Riya
    Chanda, Kironmala
    Maity, Rajib
    RENEWABLE ENERGY, 2022, 188 : 819 - 829
  • [23] Projected changes and uncertainty in cold surges over northern China using the CMIP6 weighted multi-model ensemble
    Song, Shuaifeng
    Yan, Xiaodong
    ATMOSPHERIC RESEARCH, 2022, 278
  • [24] Ensemble of CMIP6 derived reference and potential evapotranspiration with radiative and advective components
    Bjarke, Nels
    Barsugli, Joseph
    Livneh, Ben
    SCIENTIFIC DATA, 2023, 10 (01)
  • [25] Ensemble of CMIP6 derived reference and potential evapotranspiration with radiative and advective components
    Nels Bjarke
    Joseph Barsugli
    Ben Livneh
    Scientific Data, 10
  • [26] Constraint on regional land surface air temperature projections in CMIP6 multi-model ensemble
    Jie Zhang
    Tongwen Wu
    Laurent Li
    Kalli Furtado
    Xiaoge Xin
    Chengjun Xie
    Mengzhe Zheng
    He Zhao
    Yumeng Zhou
    npj Climate and Atmospheric Science, 6
  • [27] Future Changes in Precipitation Over Northern Europe Based on a Multi-model Ensemble from CMIP6: Focus on Tana River Basin
    Moradian, Sogol
    Haghighi, Ali Torabi
    Asadi, Maryam
    Mirbagheri, Seyed Ahmad
    WATER RESOURCES MANAGEMENT, 2023, 37 (6-7) : 2447 - 2463
  • [28] Evaluation and projection of marine heatwaves in the South China Sea:insights from CMIP6 multi-model ensemble
    Kai Liu
    Kang Xu
    Tongxin Han
    Congwen Zhu
    Nina Li
    Anboyu Guo
    Xiaolu Huang
    Acta Oceanologica Sinica, 2024, 43 (07) : 15 - 25
  • [29] The Characteristics and Evaluation of Future Droughts across China through the CMIP6 Multi-Model Ensemble
    Ma, Zice
    Sun, Peng
    Zhang, Qiang
    Zou, Yifan
    Lv, Yinfeng
    Li, Hu
    Chen, Donghua
    REMOTE SENSING, 2022, 14 (05)
  • [30] A comprehensive analysis of future solar energy potential variations using a CMIP6 multi-model ensemble approach in Colombia
    Arregoces, Heli A.
    Rojano, Roberto
    Pimienta, Daiver Pinto
    CLEAN ENERGY, 2024, 8 (04): : 79 - 89