Enhancing heart failure diagnosis through multi-modal data integration and deep learning

被引:0
|
作者
Liu, Yi [1 ,2 ,3 ,4 ]
Li, Dengao [2 ,3 ,4 ,5 ]
Zhao, Jumin [1 ,2 ,3 ,4 ]
Liang, Yuchen [6 ]
机构
[1] Taiyuan Univ Technol, Coll Informat & Comp, Taiyuan 030024, Peoples R China
[2] Key Lab Big Data Fus Anal & Applicat Shanxi Prov, Taiyuan 030024, Peoples R China
[3] Intelligent Percept Engn Technol Ctr Shanxi, Taiyuan 030024, Peoples R China
[4] Shanxi Prov Engn Technol Res Ctr Spatial Informat, Taiyuan 030024, Peoples R China
[5] Taiyuan Univ Technol, Coll Data Sci, Taiyuan 030024, Peoples R China
[6] Shanxi Cardiovasc Hosp, Taiyuan 030027, Peoples R China
基金
中国国家自然科学基金;
关键词
Heart failure; Deep learning; Classification; Multimodal fusion; Medical; FUSION; ECG;
D O I
10.1007/s11042-023-17716-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the realm of medical data processing, the surge in electronic health records has opened avenues for addressing clinical challenges. Although machine and deep learning methods have gained traction, they often overlook the potential of multimodal data. Thus, multimodal fusion emerges as a prominent field in artificial intelligence research, capitalizing on the synergy between diverse data types to enhance classification models. This study introduces an innovative technique tailored for heart failure classification, harnessing the power of multimodal features. The proposed approach utilizes three distinct feature types: electrocardiogram, chest X-ray, and structured text data. These are integrated to form a comprehensive multimodal fusion model. This study demonstrates the superior performance of the proposed model compared to single-modality counterparts, even in the presence of noise, through a rigorous experiment involving 440 cases. It pioneers the integration of multimodal information using deep learning techniques for heart failure assessment, offering novel insights and a practical approach for accurate detection and treatment.
引用
收藏
页码:55259 / 55281
页数:23
相关论文
共 50 条
  • [21] Longitudinal and Multi-Modal Data Learning for Parkinson's Disease Diagnosis
    Huang, Zhongwei
    Lei, Haijun
    Zhao, Yujia
    Zhou, Feng
    Yan, Jin
    Elazab, Ahmed
    Lei, Baiying
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1411 - 1414
  • [22] Multi-modal deep learning for landform recognition
    Du, Lin
    You, Xiong
    Li, Ke
    Meng, Liqiu
    Cheng, Gong
    Xiong, Liyang
    Wang, Guangxia
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 158 : 63 - 75
  • [23] Deep Multi-modal Learning with Cascade Consensus
    Yang, Yang
    Wu, Yi-Feng
    Zhan, De-Chuan
    Jiang, Yuan
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2018, 11013 : 64 - 72
  • [24] Multi-modal deep distance metric learning
    Roostaiyan, Seyed Mahdi
    Imani, Ehsan
    Baghshah, Mahdieh Soleymani
    INTELLIGENT DATA ANALYSIS, 2017, 21 (06) : 1351 - 1369
  • [25] Multi-modal deep learning model for auxiliary diagnosis of Alzheimer's disease
    Zhang, Fan
    Li, Zhenzhen
    Zhang, Boyan
    Dua, Haishun
    Wang, Binjie
    Zhang, Xinhong
    NEUROCOMPUTING, 2019, 361 : 185 - 195
  • [26] Deep Object Tracking with Multi-modal Data
    Zhang, Xuezhi
    Yuan, Yuan
    Lu, Xiaoqiang
    2016 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (CITS), 2016, : 161 - 165
  • [27] Multi-modal Active Learning From Human Data: A Deep Reinforcement Learning Approach
    Rudovic, Ognjen
    Zhang, Meiru
    Schuller, Bjorn
    Picard, Rosalind W.
    ICMI'19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2019, : 6 - 15
  • [28] The integration of information in a digital, multi-modal learning environment
    Schueler, Anne
    LEARNING AND INSTRUCTION, 2019, 59 : 76 - 87
  • [29] Multi-modal Learning with Missing Data for Cancer Diagnosis Using Histopathological and Genomic Data
    Cui, Can
    Asad, Zuhayr
    Dean, William F.
    Smith, Isabelle T.
    Madden, Christopher
    Bao, Shunxing
    Landman, Bennett A.
    Roland, Joseph T.
    Coburn, Lori A.
    Wilson, Keith T.
    Zwerner, Jeffrey P.
    Zhao, Shilin
    Wheless, Lee E.
    Huo, Yuankai
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [30] Multi-modal deep learning from imaging genomic data for schizophrenia classification
    Kanyal, Ayush
    Mazumder, Badhan
    Calhoun, Vince D.
    Preda, Adrian
    Turner, Jessica
    Ford, Judith
    Ye, Dong Hye
    FRONTIERS IN PSYCHIATRY, 2024, 15