Hybrid Superlattice-Triggered Selective Proton Grotthuss Intercalation in δ-MnO2 for High-Performance Zinc-Ion Battery

被引:70
|
作者
Zhang, Anqi [1 ]
Zhao, Ran [1 ]
Wang, Yahui [1 ,2 ]
Yue, Jiasheng [1 ]
Yang, Jingjing [1 ]
Wang, Xinran [1 ,2 ]
Wu, Chuan [1 ,2 ]
Bai, Ying [1 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Yangtze Delta Reg Acad, Jiaxing 314019, Peoples R China
基金
中国国家自然科学基金;
关键词
Charge Transfer; Electrochemistry; Electron Entropy; Grotthuss Mechanism; Hybrid Superlattice; CATHODE; STORAGE; WATER;
D O I
10.1002/anie.202313163
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A great deal of attention has been paid on layered manganese dioxide (delta-MnO2) as promising cathode candidate for aqueous zinc-ion battery (ZIB) due to the excellent theoretical capacity, high working voltage and Zn2+/H+ co-intercalation mechanism. However, caused by the insertion of Zn2+, the strong coulomb interaction and sluggish diffusion kinetics have resulted in significant structure deformation, insufficient cycle stability and limited rate capability. And it is still far from satisfactory to accurately modulate H+ intercalation for superior electrochemical kinetics. Herein, the terrace-shape delta-MnO2 hybrid superlattice by polyvinylpyrrolidone (PVP) pre-intercalation (PVP-MnO2) was proposed with the state-of-the-art ZIBs performance. Local atomic structure characterization and theoretical calculations have been pioneering in confirming the hybrid superlattice-triggered synergy of electron entropy stimulation and selective H+ Grotthuss intercalation. Accordingly, PVP-MnO2 hybrid superlattice exhibits prominent specific capacity (317.2 mAh g(-1) at 0.125 A g(-1)), significant rate performance (106.1 mAh g(-1) at 12.5 A g(-1)), and remarkable cycle stability at high rate (approximate to 100 % capacity retention after 20,000 cycles at 10 A g(-1)). Therefore, rational design of interlayer configuration paves the pathways to the development of MnO2 superlattice for advanced Zn-MnO2 batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Fabrication of a 3D structure MnO2 electrode with high MnO2 mass loading as the cathode for high-performance aqueous zinc-ion batteries
    Nie, Nantian
    Wang, Fuliang
    Yao, Wenhao
    ELECTROCHIMICA ACTA, 2023, 472
  • [22] Rational optimization of substituted α-MnO2 cathode for aqueous zinc-ion battery
    Le, Thanh
    Takeuchi, Esther S.
    Takeuchi, Kenneth J.
    Marschilok, Amy C.
    Liu, Ping
    ENERGY STORAGE, 2024, 6 (04)
  • [23] β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery
    Wenbao Liu
    Xiaoyu Zhang
    Yongfeng Huang
    Baozheng Jiang
    Ziwen Chang
    Chengjun Xu
    Feiyu Kang
    Journal of Energy Chemistry, 2021, 56 (05) : 365 - 373
  • [24] Enabling stable MnO2 matrix for aqueous zinc-ion battery cathodes
    Jiao, Yiding
    Kang, Liqun
    Berry-Gair, Jasper
    McColl, Kit
    Li, Jianwei
    Dong, Haobo
    Jiang, Hao
    Wang, Ryan
    Cora, Furio
    Brett, Dan J. L.
    He, Guanjie
    Parkin, Ivan P.
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (42) : 22075 - 22082
  • [25] Electrochemical controllable synthesis of MnO2 as cathode of rechargeable Zinc-ion battery
    Fan, Xiaoyong
    Yang, Huan
    Ni, Kefan
    Han, Jiaxing
    Wu, Yan
    Sun, Ruibo
    Gou, Lei
    Li, Donglin
    FUNCTIONAL MATERIALS LETTERS, 2020, 13 (03)
  • [26] In situ grown MnO2/graphdiyne oxide hybrid 3D nanoflowers for high-performance aqueous zinc-ion batteries
    Wang, Fuhui
    Jin, Weiyue
    Xiong, Zecheng
    Liu, Huibiao
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (14) : 5400 - 5409
  • [27] Al-doped α-MnO2 coated by lignin for high-performance rechargeable aqueous zinc-ion batteries
    Xu, Jingliang
    Hu, Xinhang
    Alam, Md Asraful
    Muhammad, Gul
    Lv, Yongkun
    Wang, Minghai
    Zhu, Chenjie
    Xiong, Wenlong
    RSC ADVANCES, 2021, 11 (56) : 35280 - 35286
  • [28] Synthesis of three-dimensional β-MnO2/PPy composite for high-performance cathode in zinc-ion batteries
    Liao, Xiaobo
    Pan, Chengling
    Pan, Yusong
    Yin, Chengjie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 888
  • [29] Crystalline and amorphous MnO2 cathodes with open framework enable high-performance aqueous zinc-ion batteries
    Huang, Chunfu
    Wu, Cong
    Zhang, Zilu
    Xie, Yunyun
    Li, Yang
    Yang, Caihong
    Wang, Hai
    FRONTIERS OF MATERIALS SCIENCE, 2021, 15 (02) : 202 - 215
  • [30] Crystalline and amorphous MnO2 cathodes with open framework enable high-performance aqueous zinc-ion batteries
    Chunfu Huang
    Cong Wu
    Zilu Zhang
    Yunyun Xie
    Yang Li
    Caihong Yang
    Hai Wang
    Frontiers of Materials Science, 2021, 15 : 202 - 215