Evaluating the accuracy of predicted bridge condition using machine learning: the role of condition history

被引:1
|
作者
Paydavosi, Parham [1 ]
Dehghani, Mohammad Saied [1 ]
Mcneil, Sue [2 ,3 ]
机构
[1] KN Toosi Univ Technol, Dept Civil Engn, Tehran, Iran
[2] Univ New South Wales, Univ Delaware, Dept Civil & Environm Engn, Newark, DE USA
[3] Univ New South Wales, Sch Civil Engn, Newark, DE USA
关键词
Artificial intelligence; big data; infrastructure asset management; machine learning; bridge structure deterioration; bridge condition; neural network; performance prediction; MODEL;
D O I
10.1080/15732479.2023.2274878
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Effective maintenance decisions for bridges depend on accurate performance prediction. Machine learning (ML) models use historical bridge performance data to learn and predict performance. However, in many agencies, the condition history of bridges is limited and does not go beyond a few years. The question, therefore, is, to what extent does condition history help us make better predictions? To address this question, a ML model was developed that analysed more than 600,000 bridge decks with 27 years of condition history. Two data selection methods were designed: non-overlapping and overlapping data. The non-overlapping data are typically used to train the model. The overlapping data introduced in this study uses the data more efficiently for model training recognising that strings of historical data convey more information. Longer term predictions were found to be positively impacted by every additional year of condition history. Short-term condition prediction (one or two years) does not need significant historical data. It was also found that overlapping data, compared to non-overlapping data, produced larger training samples and had higher prediction accuracy in the majority of experiments, but at the cost of higher running time due to a larger sample size.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Condition monitoring of a CNC hobbing cutter using machine learning approach
    Tambake, Nagesh
    Deshmukh, Bhagyesh
    Pardeshi, Sujit
    Salunkhe, Sachin
    Cep, Robert
    Nasr, Emad Abouel
    ADVANCES IN MECHANICAL ENGINEERING, 2024, 16 (09)
  • [32] IoT Based CNC Machine Condition Monitoring System Using Machine Learning Techniques
    Krishna, Mohan K.
    Kannadaguli, Prashanth
    2020 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT 2020), 2020, : 61 - 65
  • [33] A Study on Wheel Member Condition Recognition Using Machine Learning (Support Vector Machine)
    Lee, Jin-Han
    Lee, Jun-Hee
    Yun, Kwang-Su
    Bae, Han Byeol
    Kim, Sun Young
    Jeong, Jae-Hoon
    Kim, Jin-Pyung
    SENSORS, 2023, 23 (20)
  • [34] Leveraging Machine Learning for Pipeline Condition Assessment
    Lu, Hongfang
    Xu, Zhao-Dong
    Zang, Xulei
    Xi, Dongmin
    Iseley, Tom
    Matthews, John C.
    Wang, Niannian
    JOURNAL OF PIPELINE SYSTEMS ENGINEERING AND PRACTICE, 2023, 14 (03)
  • [35] Machine learning for power generator condition assessment
    Ilic, Denis
    Zarkovic, Mileta
    ELECTRICAL ENGINEERING, 2024, 106 (03) : 2691 - 2703
  • [36] Advances in Machine Learning for Sensing and Condition Monitoring
    Ao, Sio-Iong
    Gelman, Len
    Karimi, Hamid Reza
    Tiboni, Monica
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [37] Ensemble machine learning for intelligent condition monitoring
    Jenab, Kouroush
    Ward, Tyler
    Isaza, Cesar
    Ortega-Moody, Jorge
    Anaya, Karina
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024,
  • [38] Machine learning techniques for pavement condition evaluation
    Sholevar, Nima
    Golroo, Amir
    Esfahani, Sahand Roghani
    AUTOMATION IN CONSTRUCTION, 2022, 136
  • [39] Machine learning for developing a pavement condition index
    Kheirati, Afarin
    Golroo, Amir
    AUTOMATION IN CONSTRUCTION, 2022, 139
  • [40] Bridge condition assessment using an expert system
    Natke, H.G., 1600, Pergamon Press Ltd, Oxford, United Kingdom (07):