Groundwater level monitoring network design with machine learning methods

被引:6
|
作者
Teimoori, Sadaf [1 ]
Olya, Mohammad Hessam [2 ]
Miller, Carol J. [1 ]
机构
[1] Wayne State Univ, Coll Engn, Dept Civil & Environm Engn, 5050 Anthony Wayne Dr, Detroit, MI 48202 USA
[2] Wayne State Univ, Coll Engn, Dept Ind & Syst Engn, 4815 Fourth St, Detroit, MI 48202 USA
关键词
Groundwater level; Monitoring networks; Machine learning; Groundwater modeling; MODFLOW; FLOW; PLAIN;
D O I
10.1016/j.jhydrol.2023.130145
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This research introduces a method combining groundwater models and machine learning (ML) algorithms to locate observation wells and design optimal Groundwater Level Monitoring Networks (GLMNs). Groundwater models and stochastic simulations are used to extract required hydrogeological datasets for ML algorithms. In addition to data generation, the stochastic simulations minimize the uncertainties in the aquifer characterization, leading to a precise design of GLMNs. In this research, K-means clustering and relevance vector machine (RVM) are the ML algorithms employed to determine the optimal configuration of observation wells in terms of number and location in a monitoring network. This study proposes three GLMNs (K-mean, RVM, modified RVM), compares them with the existing observation wells, and investigates their effects on the accuracy of groundwater modeling and running time. The groundwater model with a K-mean network runs faster than other configurations, while the model with a modified RVM network shows a significant decrease in errors.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Groundwater Monitoring Network Design Using GIS and Multicriteria Analysis
    Juan M. Esquivel
    Guillermo P. Morales
    María V. Esteller
    Water Resources Management, 2015, 29 : 3175 - 3194
  • [42] MONITORING NETWORK DESIGN TO PROVIDE INITIAL DETECTION OF GROUNDWATER CONTAMINATION
    MEYER, PD
    VALOCCHI, AJ
    EHEART, JW
    WATER RESOURCES RESEARCH, 1994, 30 (09) : 2647 - 2659
  • [43] Development of an Entropy Method for Groundwater Quality Monitoring Network Design
    Alizadeh Z.
    Yazdi J.
    Moridi A.
    Environmental Processes, 2018, 5 (4) : 769 - 788
  • [44] Multiobjective Design of Groundwater Monitoring Network Under Epistemic Uncertainty
    Dhar, Anirban
    Patil, Rajvardhan S.
    WATER RESOURCES MANAGEMENT, 2012, 26 (07) : 1809 - 1825
  • [45] Multiobjective Design of Groundwater Monitoring Network Under Epistemic Uncertainty
    Anirban Dhar
    Rajvardhan S. Patil
    Water Resources Management, 2012, 26 : 1809 - 1825
  • [46] Groundwater Monitoring Network Design Using GIS and Multicriteria Analysis
    Esquivel, Juan M.
    Morales, Guillermo P.
    Esteller, Maria V.
    WATER RESOURCES MANAGEMENT, 2015, 29 (09) : 3175 - 3194
  • [47] Optimal design of groundwater pollution monitoring network under uncertainty
    Dong, Guang-Qi
    Lu, Wen-Xi
    Fan, Yue
    Pan, Zi-Dong
    Zhongguo Huanjing Kexue/China Environmental Science, 2022, 42 (05): : 2144 - 2152
  • [48] Groundwater level prediction using machine learning models: A comprehensive review
    Tao, Hai
    Hameed, Mohammed Majeed
    Marhoon, Haydar Abdulameer
    Zounemat-Kermani, Mohammed
    Heddam, Salim
    Kim, Sungwon
    Sulaiman, Sadeq Oleiwi
    Tan, Mou Leong
    Sa'adi, Zulfaqar
    Mehrm, Ali Danandeh
    Allawi, Mohammed Falah
    Abba, S., I
    Zain, Jasni Mohamad
    Falah, Mayadah W.
    Jamei, Mehdi
    Bokde, Neeraj Dhanraj
    Bayatvarkeshi, Maryam
    Al-Mukhtar, Mustafa
    Bhagat, Suraj Kumar
    Tiyasha, Tiyasha
    Khedher, Khaled Mohamed
    Al-Ansari, Nadhir
    Shahid, Shamsuddin
    Yaseen, Zaher Mundher
    NEUROCOMPUTING, 2022, 489 : 271 - 308
  • [49] Groundwater Level Prediction Using Machine Learning and Geostatistical Interpolation Models
    Zowam, Fabian J.
    Milewski, Adam M.
    Water (Switzerland), 16 (19):
  • [50] CLASSIFYING AND MAPPING GROUNDWATER LEVEL VARIATIONS USING MACHINE LEARNING MODELS
    Yu, Su Min
    Seo, Jae Young
    Kim, Bo Ram
    Lee, Sang-Il
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3755 - 3757