Groundwater level monitoring network design with machine learning methods

被引:6
|
作者
Teimoori, Sadaf [1 ]
Olya, Mohammad Hessam [2 ]
Miller, Carol J. [1 ]
机构
[1] Wayne State Univ, Coll Engn, Dept Civil & Environm Engn, 5050 Anthony Wayne Dr, Detroit, MI 48202 USA
[2] Wayne State Univ, Coll Engn, Dept Ind & Syst Engn, 4815 Fourth St, Detroit, MI 48202 USA
关键词
Groundwater level; Monitoring networks; Machine learning; Groundwater modeling; MODFLOW; FLOW; PLAIN;
D O I
10.1016/j.jhydrol.2023.130145
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This research introduces a method combining groundwater models and machine learning (ML) algorithms to locate observation wells and design optimal Groundwater Level Monitoring Networks (GLMNs). Groundwater models and stochastic simulations are used to extract required hydrogeological datasets for ML algorithms. In addition to data generation, the stochastic simulations minimize the uncertainties in the aquifer characterization, leading to a precise design of GLMNs. In this research, K-means clustering and relevance vector machine (RVM) are the ML algorithms employed to determine the optimal configuration of observation wells in terms of number and location in a monitoring network. This study proposes three GLMNs (K-mean, RVM, modified RVM), compares them with the existing observation wells, and investigates their effects on the accuracy of groundwater modeling and running time. The groundwater model with a K-mean network runs faster than other configurations, while the model with a modified RVM network shows a significant decrease in errors.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Machine learning-based optimal design of groundwater pollution monitoring network
    Xiong, Yu
    Luo, Jiannan
    Liu, Xuan
    Liu, Yong
    Xin, Xin
    Wang, Shuangyu
    ENVIRONMENTAL RESEARCH, 2022, 211
  • [2] DESIGN OF GROUNDWATER LEVEL MONITORING NETWORK WITH ORDINARY KRIGING
    YANG Feng-guang
    Journal of Hydrodynamics, 2008, (03) : 339 - 346
  • [3] Design of Groundwater Level Monitoring Network with Ordinary Kriging
    Feng-guang Yang
    Shu-you Cao
    Xing-nian Liu
    Ke-jun Yang
    Journal of Hydrodynamics, 2008, 20 : 339 - 346
  • [4] DESIGN OF GROUNDWATER LEVEL MONITORING NETWORK WITH ORDINARY KRIGING
    Yang Feng-guang
    Cao Shu-you
    Liu Xing-nian
    Yang Ke-jun
    JOURNAL OF HYDRODYNAMICS, 2008, 20 (03) : 339 - 346
  • [5] Machine learning for groundwater pollution source identification and monitoring network optimization
    Yiannis N. Kontos
    Theodosios Kassandros
    Konstantinos Perifanos
    Marios Karampasis
    Konstantinos L. Katsifarakis
    Kostas Karatzas
    Neural Computing and Applications, 2022, 34 : 19515 - 19545
  • [6] Machine learning for groundwater pollution source identification and monitoring network optimization
    Kontos, Yiannis N.
    Kassandros, Theodosios
    Perifanos, Konstantinos
    Karampasis, Marios
    Katsifarakis, Konstantinos L.
    Karatzas, Kostas
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (22): : 19515 - 19545
  • [7] Groundwater level monitoring-importance global groundwater monitoring network
    Jayakumar, Ramasamy
    JOURNAL OF GROUNDWATER SCIENCE AND ENGINEERING, 2015, 3 (04): : 295 - 305
  • [8] Application of machine learning technique-based time series models for prediction of groundwater level fluctuation to national groundwater monitoring network data
    Yoon, Heesung
    Yoon, Pilsun
    Lee, Eunhee
    Kim, Gyoo-Bum
    Moon, Sang-Ho
    JOURNAL OF THE GEOLOGICAL SOCIETY OF KOREA, 2016, 52 (03) : 187 - 199
  • [9] Optimization Design of Groundwater Level Monitoring Network Based on the Geo-Statistics
    Jing, Chen
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON SCIENCE AND SOCIAL RESEARCH (ICSSR 2013), 2013, 64 : 96 - 100
  • [10] A Combination of Metaheuristic Optimization Algorithms and Machine Learning Methods Improves the Prediction of Groundwater Level
    Kayhomayoon, Zahra
    Babaeian, Faezeh
    Milan, Sami Ghordoyee
    Azar, Naser Arya
    Berndtsson, Ronny
    WATER, 2022, 14 (05)