Water-energy nexus analysis in an urban water supply system based on a water evaluation and planning model

被引:10
|
作者
Huang, Daohan [1 ]
Liu, Jie [2 ]
Han, Guoyi [3 ]
Huber-Lee, Annette [4 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Urban Econ & Management, Beijing 100041, Peoples R China
[2] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
[3] Stockholm Environm Inst, Stockholm Off, S-11523 Stockholm, Sweden
[4] Stockholm Environm Inst, Boston Off, Somerville, MA 02144 USA
基金
中国国家自然科学基金;
关键词
Nexus analysis; Unconventional water sources; Water supply structure; Water evaluation and planning; Beijing; RECLAIMED WATER; TOOLS;
D O I
10.1016/j.jclepro.2023.136750
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Consuming less energy and conserving more water are important targets in current water-energy nexus research and practice. However, these targets have not been simultaneously explored in the context of the water supply systems of megacities. In this study, the Water Evaluation and Planning (WEAP) platform is used to explore the energy consumption of the water supply system in Beijing with the energy intensity as the operational cost. The WEAP_Beijing model was built to analyze the energy consumption, water storage, and structure of water supply sources in Beijing from 2001 to 2019. The results indicate that the energy consumption of the water supply system in Beijing has been increasing since 2001; additionally, the energy intensity has increased from 2001 to 2013 and has varied between 1.15 and 1.25 kWh/m3 since 2014. This increasing trend is mainly driven by the increasing ratios of transported water and reclaimed water in the water supply system and by the current use strategy of transported water. Scenario analysis showed that transported water and reclaimed water have increased local water storage but have also led to increased energy consumption, which depends on their ratios in the total water supply and the water use strategy. The water supply structure of each water use sector was simulated and displayed distinct dynamics. An energy-friendly water supply system was proposed to adjust transported water use strategies, optimize the ratio of reclaimed water in the water supply, and manage water and energy from a holistic perspective. The results of this study suggest that a policy evaluation of current water policies is needed to secure and sustain the water supply in megacities.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Meeting the Needs of the Water-Energy Nexus
    Desai, Snehal
    Klanecky, David A.
    CHEMICAL ENGINEERING PROGRESS, 2011, 107 (04) : 22 - 27
  • [42] The Water-Energy Nexus in the American West
    Lasserre, Frederic
    ETUDES INTERNATIONALES, 2013, 44 (01): : 148 - 149
  • [43] China's water-energy nexus
    Kahrl, Fredrich
    Roland-Holst, David
    WATER POLICY, 2008, 10 : 51 - 65
  • [44] WATER-ENERGY NEXUS Breaking the spell
    Davies, Evan G. R.
    NATURE ENERGY, 2018, 3 (09): : 716 - 717
  • [45] Balancing the Scales with The Water-Energy Nexus
    McGowan, Mary Kate
    ASHRAE JOURNAL, 2017, 59 (09) : 40 - 42
  • [46] Technology and Engineering of the Water-Energy Nexus
    Rao, Prakash
    Kostecki, Robert
    Dale, Larry
    Gadgil, Ashok
    ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, VOL 42, 2017, 42 : 407 - 437
  • [47] Senate Examines Water-Energy Nexus
    不详
    MECHANICAL ENGINEERING, 2012, 134 (09) : 18 - 18
  • [48] SYSTEMATIC DESIGN, ANALYSIS AND OPTIMIZATION OF WATER-ENERGY NEXUS
    Tsolas, S. D.
    Karim, M. N.
    Hasan, M. M. F.
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON FOUNDATIONS OF COMPUTER-AIDED PROCESS DESIGN, 2019, 47 : 227 - 232
  • [49] Water-energy nexus for Birmingham, UK
    Akram, Babak
    Arabi, Azadeh Kalateh
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENERGY, 2023, 176 (02) : 53 - 66
  • [50] An international look at the water-energy nexus
    Venkatesh, Govindarajan
    Dhakal, Shobhakar
    JOURNAL AMERICAN WATER WORKS ASSOCIATION, 2012, 104 (05): : 93 - 96