Graph Contrastive Learning With Negative Propagation for Recommendation

被引:2
|
作者
Liu, Meishan [1 ]
Jian, Meng [1 ]
Bai, Yulong [1 ]
Wu, Jiancan [2 ]
Wu, Lifang [1 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Contrastive learning; graph convolution; recommender system; user interest;
D O I
10.1109/TCSS.2024.3356071
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Previous recommendation models build interest embeddings heavily relying on the observed interactions and optimize the embeddings with a contrast between the interactions and randomly sampled negative instances. To our knowledge, the negative interest signals remain unexplored in interest encoding, which merely serves losses for backpropagation. Besides, the sparse undifferentiated interactions inherently bring implicit bias in revealing users' interests, leading to suboptimal interest prediction. The negative interest signals would be a piece of promising evidence to support detailed interest modeling. In this work, we propose a perturbed graph contrastive learning with negative propagation (PCNP) for recommendation, which introduces negative interest to assist interest modeling in a contrastive learning (CL) architecture. An auxiliary channel of negative interest learning generates a contrastive graph by negative sampling and propagates complementary embeddings of users and items to encode negative signals. The proposed PCNP contrasts positive and negative embeddings to promote interest modeling for recommendation. Extensive experiments demonstrate the capability of PCNP using two-level CL to alleviate interaction sparsity and bias issues for recommendation.
引用
收藏
页码:4255 / 4266
页数:12
相关论文
共 50 条
  • [31] Multitask learning of adversarial-contrastive graph for recommendation
    Ma, Xingyu
    Wang, Chuanxu
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (02)
  • [32] Adaptive denoising graph contrastive learning with memory graph attention for recommendation
    Ma, Gang-Feng
    Yang, Xu-Hua
    Gao, Liang-Yu
    Lian, Ling-Hang
    NEUROCOMPUTING, 2024, 610
  • [33] Adaptive negative representations for graph contrastive learning
    Zhang, Qi
    Yang, Cheng
    Shi, Chuan
    AI OPEN, 2024, 5 : 79 - 86
  • [34] Integrating contrastive learning and adversarial learning on graph denoising encoder for recommendation
    Zhou, Wei
    Zhang, Xianyi
    Wen, Junhao
    Wang, Xibin
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 264
  • [35] Graph Contrastive Learning via Hierarchical Multiview Enhancement for Recommendation
    Liu, Zhi
    Xiang, Hengjing
    Liang, Ruxia
    Xiang, Jinhai
    Wen, Chaodong
    Liu, Sannyuya
    Sun, Jianwen
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (03) : 2403 - 2412
  • [36] HCL: Hybrid Contrastive Learning for Graph-based Recommendation
    Ma, Xiyao
    Gao, Zheng
    Hu, Qian
    AbdelHady, Mohamed
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [37] Multimodal Graph Contrastive Learning for Multimedia-Based Recommendation
    Liu, Kang
    Xue, Feng
    Guo, Dan
    Sun, Peijie
    Qian, Shengsheng
    Hong, Richang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 9343 - 9355
  • [38] A Knowledge Graph Recommendation Approach Incorporating Contrastive and Relationship Learning
    Shen, Xintao
    Zhang, Yulai
    IEEE ACCESS, 2023, 11 : 99628 - 99637
  • [39] Multi-contrastive Learning Recommendation Combined with Knowledge Graph
    Chen, Fei
    Kang, Zihan
    Zhang, Chenxi
    Wu, Chunming
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [40] Adaptive multi-graph contrastive learning for bundle recommendation
    Tao, Qian
    Liu, Chenghao
    Xia, Yuhan
    Xu, Yong
    Li, Lusi
    NEURAL NETWORKS, 2025, 181