Sulfide-modified nanoscale zero-valent iron as a novel therapeutic remedy for septic myocardial injury

被引:2
|
作者
Wang, Daquan [1 ,2 ,3 ]
Zhao, Huadong [4 ]
Deng, Chao [5 ]
Lei, Wangrui [1 ,3 ]
Ren, Jun [6 ,7 ]
Zhang, Shaofei [1 ,3 ]
Yang, Wenwen [1 ,3 ]
Lu, Chenxi [1 ,3 ]
Tian, Ye [1 ,3 ]
Chen, Ying [8 ]
Qiu, Yao [2 ]
Meng, Lingjie [2 ]
Yang, Yang [1 ,3 ]
机构
[1] Northwest Univ, Xian 3 Hosp, Affiliated Hosp, Fac Life Sci & Med,Dept Neurol, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Chem, MOE Key Lab Nonequilibrium Synth & Modulat Condens, Xian 710049, Peoples R China
[3] Northwest Univ, Fac Life Sci & Med, Key Lab Resource Biol & Biotechnol Western China, Minist Educ, Xian 710069, Peoples R China
[4] Airforce Med Univ, Tangdu Hosp, Dept Gen Surg, 1 Xinsi Rd, Xian 710038, Peoples R China
[5] Xi An Jiao Tong Univ, Affiliated Hosp 1, Dept Cardiovasc Surg, Xian 710061, Peoples R China
[6] Fudan Univ, Zhongshan Hosp, Shanghai Inst Cardiovasc Dis, Dept Cardiol, Shanghai, Peoples R China
[7] Univ Washington, Dept Lab Med & Pathol, Seattle, WA 98195 USA
[8] Xi An Jiao Tong Univ, Affiliated Hosp 1, Dept Hematol, Xian 710061, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
S-nanoFe; Sepsis; Myocardial injury; Oxidative stress; Inflammatory response; AMPK; SEPSIS; NANOPARTICLES;
D O I
10.1016/j.jare.2023.02.008
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Introduction: Myocardial injury is a serious complication in sepsis with high mortality. Zero-valent iron nanoparticles (nanoFe) displayed novel roles in cecal ligation and puncture (CLP)-induced septic mouse model. Nonetheless, its high reactivity makes it difficult for long-term storage. Objectives: To overcome the obstacle and improve therapeutic efficiency, a surface passivation of nanoFe was designed using sodium sulfide.Methods: We prepared iron sulfide nanoclusters and constructed CLP mouse models. Then the effect of sulfide-modified nanoscale zero-valent iron (S-nanoFe) on the survival rate, blood routine parameters, blood biochemical parameters, cardiac function, and pathological indicators of myocardium was observed. RNA-seq was used to further explore the comprehensive protective mechanisms of S-nanoFe. Finally, the stability of S-nanoFe-1d and S-nanoFe-30 d, together with the therapeutic efficacy of sepsis between S-nanoFe and nanoFe was compared.Results: The results revealed that S-nanoFe significantly inhibited the growth of bacteria and exerted a protective role against septic myocardial injury. S-nanoFe treatment activated AMPK signaling and ame-liorated several CLP-induced pathological processes including myocardial inflammation, oxidative stress, mitochondrial dysfunction. RNA-seq analysis further clarified the comprehensive myocardial protective mechanisms of S-nanoFe against septic injury. Importantly, S-nanoFe had a good stability and a compa-rable protective efficacy to nanoFe.Conclusions: The surface vulcanization strategy for nanoFe has a significant protective role against sepsis and septic myocardial injury. This study provides an alternative strategy for overcoming sepsis and septic myocardial injury and opens up possibilities for the development of nanoparticle in infectious diseases.(c) 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:145 / 158
页数:14
相关论文
共 50 条
  • [41] Recovery of indium ions by nanoscale zero-valent iron
    Chen, Wen
    Su, Yiming
    Wen, Zhipan
    Zhang, Yalei
    Zhou, Xuefei
    Dai, Chaomeng
    JOURNAL OF NANOPARTICLE RESEARCH, 2017, 19 (03)
  • [42] Mechanism of uranium uptake by nanoscale zero-valent iron
    Tsarev, Sergey
    Crane, Richard A.
    Waite, David T.
    Collins, Richard N.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [43] Degradation of chlorinated phenols by nanoscale zero-valent iron
    Cheng R.
    Wang J.
    Zhang W.
    Frontiers of Environmental Science & Engineering in China, 2008, 2 (1): : 103 - 108
  • [44] Transport of nanoscale zero-valent iron in the presence of rhamnolipid
    Abbasi, Alireza
    Qi, Lin
    Chen, Gang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 927
  • [45] The colorful chemistry of nanoscale zero-valent iron(nZVI)
    Yilong Hua
    Jing Liu
    Tianhang Gu
    Wei Wang
    Wei-xian Zhang
    Journal of Environmental Sciences, 2018, (05) : 1 - 3
  • [46] Modeling arsenic removal by nanoscale zero-valent iron
    Umma S. Rashid
    Bernhardt Saini-Eidukat
    Achintya N. Bezbaruah
    Environmental Monitoring and Assessment, 2020, 192
  • [47] Stability of green tea nanoscale zero-valent iron
    Suponik, Tomasz
    Lemanowicz, Marcin
    Wrona, Pawel
    MINERAL ENGINEERING CONFERENCE (MEC2016), 2016, 8
  • [48] The colorful chemistry of nanoscale zero-valent iron (nZVI)
    Hua, Yilong
    Liu, Jing
    Gu, Tianhang
    Wang, Wei
    Zhang, Wei-xian
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2018, 67 : 1 - 3
  • [49] The sorption of metal ions on nanoscale zero-valent iron
    Suponik, Tomasz
    Popczyk, Marcin
    Pierzyna, Piotr
    MINERAL ENGINEERING CONFERENCE (MEC2017), 2017, 18
  • [50] Modeling arsenic removal by nanoscale zero-valent iron
    Rashid, Umma S.
    Saini-Eidukat, Bernhardt
    Bezbaruah, Achintya N.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2020, 192 (02)