Electrochemically exfoliated graphene-graphite architecture with MnO2 for redox pseudocapacitive process

被引:2
|
作者
Li, Yuanyuan [1 ,2 ]
Song, Lina [2 ]
Wang, Dongyun [2 ]
Zhan, Xiaoli [1 ,2 ]
Cheng, Dangguo [1 ,2 ]
Lu, Jianguo [2 ]
Hou, Yang [1 ,2 ]
Zhang, Qinghua [1 ,2 ]
机构
[1] Inst Zhejiang Univ Quzhou, Quzhou 324000, Peoples R China
[2] Zhejiang Univ, Coll Chem & Biol Engn, Zheda Rd, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; Graphite; Supercapacitor; Electrode; Manganese dioxide; CHARGE STORAGE MECHANISM; HIGH-PERFORMANCE; VERTICAL GRAPHENE; ENERGY-STORAGE; SUPERCAPACITOR; ELECTRODES;
D O I
10.1016/j.electacta.2023.143577
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
An electrochemical exfoliation-deposition strategy is provided to fabricate the MnO2-based electrode. After the efficient exfoliation in MnSO4 electrolyte, the stacked graphite expands into open structure, with vertical graphene sheets strongly bonded on the surface. This unique architecture not only provides sufficient surface areas for the anchoring of oxygen vacancy-enriched MnO2, but also ensures transportation pathways for the charge transfer and electrolyte ions diffusion. Thus, the resultant electrode exhibits an areal specific capacitance of 447.5 mF cm-2 at 0.5 mA cm-2 and promising cycling stability. It outperforms the analogues exfoliated in another Mn-based electrolyte because of the anion effect. In situ Raman spectra are taken to reveal the structural evolutions of the resultant electrode coupled with Na+ ions insertion-extraction behaviors in the redox pseudocapacitive process.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Chemically and electrochemically prepared graphene/MnO2 nanocomposite electrodes for zinc primary cells: a comparative study
    M. Selvam
    S. R. Srither
    K. Saminathan
    V. Rajendran
    Ionics, 2015, 21 : 791 - 799
  • [32] γ-MnO2 for Li batteries. Part II. Some aspects of the lithium insertion process into γ-MnO2 and electrochemically lithiated γ-LixMnO2 compounds
    Sarciaux, S.
    Le Gal La Salle, A.
    Verbaere, A.
    Piffard, Y.
    Guyomard, D.
    Journal of Power Sources, 1999, 81 : 661 - 665
  • [33] Electrochemically grown MnO2 nanowires for supercapacitor and electrocatalysis applications
    Raut, Siddheshwar D.
    Mane, Hrishikesh R.
    Shinde, Nanasaheb M.
    Lee, Damin
    Shaikh, Shoyebmohamad F.
    Kim, Kwang Ho
    Kim, Hee-Je
    Al-Enizi, Abdullah M.
    Mane, Rajaram S.
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (41) : 17864 - 17870
  • [34] Electrochemically deposited layered MnO2 films for improved supercapacitor
    Dey, Milan Kumar
    Sahoo, Prasanta Kumar
    Satpati, Ashis Kumar
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 788 : 175 - 183
  • [35] Electrochemically active MnO2/RGO nanocomposites using Mn powder as the reducing agent of GO and the MnO2 precursor
    Li, Xichuan
    Xu, Xiaoyang
    Xia, Fengling
    Bu, Luxia
    Qiu, Haixia
    Chen, Mingxi
    Zhang, Li
    Gao, Jianping
    ELECTROCHIMICA ACTA, 2014, 130 : 305 - 313
  • [36] Synthesis of mesoporous polythiophene/MnO2 nanocomposite and its enhanced pseudocapacitive properties
    Lu, Qing
    Zhou, Yikai
    JOURNAL OF POWER SOURCES, 2011, 196 (08) : 4088 - 4094
  • [37] Robust hybrid film containing pseudocapacitive MnO2 for large areal capacitance
    Park, Soomin
    Nam, Inho
    Kim, Gil-Pyo
    Lee, Minzae
    Moon, Won Gyun
    Bae, Seongjun
    Yi, Jongheop
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [38] Electrochemical properties of graphene/MnO2 composite
    Xu, X. (liudao_zhongsheng@163.com), 1600, Chinese Ceramic Society (41):
  • [39] A novel MnO2 polysulfide process
    Rudie, GF
    Butler, KP
    Yant, R
    Galluch, R
    1996 PULPING CONFERENCE, BOOKS 1 AND 2, 1996, : 325 - 340
  • [40] Kinetic study on carbothermic reduction of MnO2 with graphite
    Kim, D. -Y.
    Jeong, I. -H.
    Jung, S. -M.
    IRONMAKING & STEELMAKING, 2016, 43 (07) : 526 - 532