Shearless curve breakup in the biquadratic nontwist map

被引:3
|
作者
Grime, Gabriel C. [1 ]
Roberto, Marisa
Viana, Ricardo L. [1 ,3 ]
Elskens, Yves [4 ]
Caldas, Ibere L. [1 ,2 ]
机构
[1] Univ Sao Paulo, Inst Phys, BR-05508090 Sao Paulo, Brazil
[2] Aeronaut Inst Technol, Phys Dept, BR-1228900 Sao Jose Dos Campos, Brazil
[3] Univ Fed Parana, Phys Dept, BR-81531990 Curitiba, Brazil
[4] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13397 Marseille 13, France
基金
瑞典研究理事会; 巴西圣保罗研究基金会;
关键词
Multiple shearless curves; Shearless curve breakup; Transport; RECONNECTION SCENARIOS; CHAOTIC TRANSPORT; TRANSITION; RENORMALIZATION; DYNAMICS;
D O I
10.1016/j.chaos.2023.113606
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nontwist area-preserving maps violate the twist condition along shearless invariant curves, which act as transport barriers in phase space. Recently, some plasma models have presented multiple shearless curves in phase space and these curves can break up independently. In this paper, we describe the different shearless curve breakup scenarios of the so-called biquadratic nontwist map, a recently proposed area-preserving map derived from a plasma model, that captures the essential behavior of systems with multiple shearless curves. Three different scenarios are found and their dependence on the system parameters is analyzed. The results indicate a relation between shearless curve breakup and periodic orbit reconnection-collision sequences. In addition, even after a shearless curve breakup, the remaining curves inhibit global transport.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Biquadratic nontwist map: a model for shearless bifurcations
    Grime, Gabriel C.
    Roberto, Marisa
    Viana, Ricardo L.
    Elskens, Yves
    Caldas, Ibere L.
    CHAOS SOLITONS & FRACTALS, 2023, 169
  • [2] Breakup of shearless meanders and "outer" tori in the standard nontwist map
    Fuchss, K.
    Wurm, A.
    Apte, A.
    Morrison, P. J.
    CHAOS, 2006, 16 (03)
  • [3] Breakup of inverse golden mean shearless tori in the two-frequency standard nontwist map
    Wurm, A.
    Martini, K. M.
    PHYSICS LETTERS A, 2013, 377 (08) : 622 - 627
  • [4] Breakup of shearless invariant tori in cubic and quartic nontwist maps
    Wurm, A.
    Portela, K. Fuchss
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (05) : 2215 - 2222
  • [5] Effective transport barriers in the biquadratic nontwist map
    Grime, Gabriel C.
    Caldas, Ibere L.
    Viana, Ricardo L.
    Elskens, Yves
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [6] The breakup condition of shearless KAM curves in the quadratic map
    Shinohara, S
    Aizawa, Y
    PROGRESS OF THEORETICAL PHYSICS, 1997, 97 (03): : 379 - 385
  • [7] Recurrence-based analysis of barrier breakup in the standard nontwist map
    Santos, Moises S.
    Mugnaine, Michele
    Szezech, Jose D., Jr.
    Batista, Antonio M.
    Caldas, Ibere L.
    Baptista, Murilo S.
    Viana, Ricardo L.
    CHAOS, 2018, 28 (08)
  • [8] Lagrangian descriptors: The shearless curve and the shearless attractor
    Baroni, R. Simile
    de Carvalho, R. Egydio
    PHYSICAL REVIEW E, 2024, 109 (02) : 024202
  • [9] Shearless effective barriers to chaotic transport induced by even twin islands in nontwist systems
    Mugnaine, M.
    Caldas, I. L.
    Szezech Jr, J. D.
    Viana, R. L.
    Morrison, P. J.
    PHYSICAL REVIEW E, 2024, 110 (04)
  • [10] Curry-Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems
    Mugnaine, Michele
    Batista, Antonio M.
    Caldas, Ibere L.
    Szezech Jr, Jose D.
    de Carvalho, Ricardo Egydio
    Viana, Ricardo L.
    CHAOS, 2021, 31 (02)