Lagrangian descriptors: The shearless curve and the shearless attractor

被引:2
|
作者
Baroni, R. Simile [1 ]
de Carvalho, R. Egydio [1 ]
机构
[1] Univ Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas IGCE, Dept Estat Matemat Aplicada & Ciencias Computacao, BR-13506900 Rio Claro, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
MAGNETIC-FIELD LINES; CHAOTIC TRANSPORT; SYMPLECTIC MAPS; NONTWIST; RENORMALIZATION; TRANSITION; FLOWS;
D O I
10.1103/PhysRevE.109.024202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Hamiltonian systems with a nonmonotonic frequency profile are called nontwist. One of the key properties of such systems, depending on adjustable parameters, is the presence of a robust transport barrier in the phase space called the shearless curve, which becomes the equally robust shearless attractor when dissipation is introduced. We consider the standard nontwist map with and without dissipation. We derive analytical expressions for the Lagrangian descriptor (LD) for the unperturbed map and show how they are related to the rotation number profile. We show how the LDs can reconstruct finite segments of the invariant manifolds for the perturbed map. In the conservative case, we demonstrate how the LDs distinguish the chaotic seas from regular structures. The LDs also provide a remarkable tool to identify when the shearless curve is destroyed: we present a fractal boundary, in the parameter space, for the existence or not of the shearless torus. In the dissipative case, we show how the LDs can be used to localize point attractors and the shearless attractor and distinguish their basins of attraction.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Destruction and resurgence of the quasiperiodic shearless attractor
    Baroni, R. Simile
    de Carvalho, R. Egydio
    PHYSICAL REVIEW E, 2021, 104 (01)
  • [2] Shear and shearless Lagrangian structures in compound channels
    Enrile, F.
    Besio, G.
    Stocchino, A.
    ADVANCES IN WATER RESOURCES, 2018, 113 : 141 - 154
  • [3] Shearless curve breakup in the biquadratic nontwist map
    Grime, Gabriel C.
    Roberto, Marisa
    Viana, Ricardo L.
    Elskens, Yves
    Caldas, Ibere L.
    CHAOS SOLITONS & FRACTALS, 2023, 172
  • [4] Transport barriers with shearless attractors
    Kato, L. Kimi
    Egydio de Carvalho, R.
    PHYSICAL REVIEW E, 2019, 99 (03)
  • [5] THE SHEARLESS TURBULENCE MIXING LAYER
    VEERAVALLI, S
    WARHAFT, Z
    JOURNAL OF FLUID MECHANICS, 1989, 207 : 191 - 229
  • [6] The mixing of scales in shearless turbulent flow
    Raddaoui, M
    Schiestel, R
    Chauve, MP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 2000, 328 (03): : 247 - 253
  • [7] Onset of shearless magnetic surfaces in tokamaks
    Vieira Abud, C.
    Caldas, I. L.
    NUCLEAR FUSION, 2014, 54 (06)
  • [8] Wavelet analysis of shearless turbulent mixing layer
    Matsushima, T.
    Nagata, K.
    Watanabe, T.
    PHYSICS OF FLUIDS, 2021, 33 (02)
  • [9] Biquadratic nontwist map: a model for shearless bifurcations
    Grime, Gabriel C.
    Roberto, Marisa
    Viana, Ricardo L.
    Elskens, Yves
    Caldas, Ibere L.
    CHAOS SOLITONS & FRACTALS, 2023, 169
  • [10] Starch Gelatinization under Shearless and Shear Conditions
    Xie, Fengwei
    Liu, Hongshen
    Chen, Pei
    Xue, Tao
    Chen, Ling
    Yu, Long
    Corrigan, Penny
    INTERNATIONAL JOURNAL OF FOOD ENGINEERING, 2006, 2 (05)