Single image super-resolution via global aware external attention and multi-scale residual channel attention network

被引:2
|
作者
Liu, Mingming [1 ,2 ]
Li, Sui [2 ,3 ]
Liu, Bing [2 ,3 ]
Yang, Yuxin [2 ,3 ]
Liu, Peng [4 ]
Zhang, Chen [2 ,3 ]
机构
[1] Jiangsu Vocat Inst Architectural Technol, Sch Intelligent Mfg, Xuzhou 221000, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[3] Minist Educ, Mine Digitizat Engn Res Ctr, Xuzhou, Peoples R China
[4] Natl Joint Engn Lab Internet Appl Technol Mines, Xuzhou 221008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Single image super-resolution; Deep feature extraction structure; Deep-connected multi-scale residual attention block; Local aware channel attention; Global aware external attention; INTERPOLATION;
D O I
10.1007/s13042-023-02030-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, deep convolutional neural networks (CNNs) have shown significant advantages in improving the performance of single image super-resolution (SISR). To build an efficient network, multi-scale convolution is commonly incorporated into CNN-based SISR methods via scale features with different perceptive fields. However, the feature correlations of the same sample are not fully utilized by the existing multi-scale SISR approaches, impeding the further improvement of reconstruction performance. In addition, the correlations between different samples are still left unexplored. To address these problems, this paper proposes a deep-connected multi-scale residual attention network (DMRAN) by virtue of the feature correlations of the same sample and the correlations between different samples. Specifically, we propose a deep-connected multi-scale residual attention block (DMRAB) to take fully advantage of the multi-scale and hierarchical features, which can effectively learn the local interdependencies between channels by adjusting the channel features adaptively. Meanwhile, a global aware external attention (GAEA) is introduced to boost the performance of SISR by learning the correlations between all the samples. Furthermore, we develop a deep feature extraction structure (DFES), which seamlessly combines the stacked deep-connected multi-scale residual attention groups (DMRAG) with GAEA to learn deep feature representations incrementally. Extensive experimental results on the public benchmark datasets show the superiority of our DMRAN to the state-of-the-art SISR methods.
引用
下载
收藏
页码:2309 / 2321
页数:13
相关论文
共 50 条
  • [21] Dual-attention guided multi-scale network for single image super-resolution
    Wen, Juan
    Zha, Lei
    APPLIED INTELLIGENCE, 2022, 52 (11) : 12258 - 12271
  • [22] Lightweight multi-scale distillation attention network for image super-resolution
    Tang, Yinggan
    Hu, Quanwei
    Bu, Chunning
    Knowledge-Based Systems, 2025, 309
  • [23] Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
    Zhang, Min
    Wang, Huibin
    Zhang, Zhen
    Chen, Zhe
    Shen, Jie
    MICROMACHINES, 2022, 13 (01)
  • [24] Image super-resolution network based on multi-scale adaptive attention
    Zhou Y.
    Pei S.
    Chen H.
    Xu S.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (06): : 843 - 856
  • [25] Multi-scale convolutional attention network for lightweight image super-resolution
    Xie, Feng
    Lu, Pei
    Liu, Xiaoyong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 95
  • [26] Lightweight multi-scale aggregated residual attention networks for image super-resolution
    Pang, Shurong
    Chen, Zhe
    Yin, Fuliang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (04) : 4797 - 4819
  • [27] Image Super-Resolution Based on Residual Attention and Multi-Scale Feature Fusion
    Kou, Qiqi
    Zhao, Jiamin
    Cheng, Deqiang
    Su, Zhen
    Zhu, Xingguang
    IEEE ACCESS, 2023, 11 : 59530 - 59541
  • [28] Lightweight multi-scale aggregated residual attention networks for image super-resolution
    Shurong Pang
    Zhe Chen
    Fuliang Yin
    Multimedia Tools and Applications, 2022, 81 : 4797 - 4819
  • [29] Deep recurrent residual channel attention network for single image super-resolution
    Liu, Yepeng
    Yang, Dezhi
    Zhang, Fan
    Xie, Qingsong
    Zhang, Caiming
    VISUAL COMPUTER, 2024, 40 (05): : 3441 - 3456
  • [30] Deep recurrent residual channel attention network for single image super-resolution
    Yepeng Liu
    Dezhi Yang
    Fan Zhang
    Qingsong Xie
    Caiming Zhang
    The Visual Computer, 2024, 40 : 3441 - 3456