Single image super-resolution via global aware external attention and multi-scale residual channel attention network

被引:2
|
作者
Liu, Mingming [1 ,2 ]
Li, Sui [2 ,3 ]
Liu, Bing [2 ,3 ]
Yang, Yuxin [2 ,3 ]
Liu, Peng [4 ]
Zhang, Chen [2 ,3 ]
机构
[1] Jiangsu Vocat Inst Architectural Technol, Sch Intelligent Mfg, Xuzhou 221000, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[3] Minist Educ, Mine Digitizat Engn Res Ctr, Xuzhou, Peoples R China
[4] Natl Joint Engn Lab Internet Appl Technol Mines, Xuzhou 221008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Single image super-resolution; Deep feature extraction structure; Deep-connected multi-scale residual attention block; Local aware channel attention; Global aware external attention; INTERPOLATION;
D O I
10.1007/s13042-023-02030-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, deep convolutional neural networks (CNNs) have shown significant advantages in improving the performance of single image super-resolution (SISR). To build an efficient network, multi-scale convolution is commonly incorporated into CNN-based SISR methods via scale features with different perceptive fields. However, the feature correlations of the same sample are not fully utilized by the existing multi-scale SISR approaches, impeding the further improvement of reconstruction performance. In addition, the correlations between different samples are still left unexplored. To address these problems, this paper proposes a deep-connected multi-scale residual attention network (DMRAN) by virtue of the feature correlations of the same sample and the correlations between different samples. Specifically, we propose a deep-connected multi-scale residual attention block (DMRAB) to take fully advantage of the multi-scale and hierarchical features, which can effectively learn the local interdependencies between channels by adjusting the channel features adaptively. Meanwhile, a global aware external attention (GAEA) is introduced to boost the performance of SISR by learning the correlations between all the samples. Furthermore, we develop a deep feature extraction structure (DFES), which seamlessly combines the stacked deep-connected multi-scale residual attention groups (DMRAG) with GAEA to learn deep feature representations incrementally. Extensive experimental results on the public benchmark datasets show the superiority of our DMRAN to the state-of-the-art SISR methods.
引用
下载
收藏
页码:2309 / 2321
页数:13
相关论文
共 50 条
  • [1] Single image super-resolution via multi-scale residual channel attention network
    Cao, Feilong
    Liu, Huan
    NEUROCOMPUTING, 2019, 358 : 424 - 436
  • [2] Multi-Scale Residual Channel Attention Network for Face Super-Resolution
    Jin W.
    Chen Y.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2020, 32 (06): : 959 - 970
  • [3] Image super-resolution with multi-scale fractal residual attention network
    Song, Xiaogang
    Liu, Wanbo
    Liang, Li
    Shi, Weiwei
    Xie, Guo
    Lu, Xiaofeng
    Hei, Xinhong
    COMPUTERS & GRAPHICS-UK, 2023, 113 : 21 - 31
  • [4] Attention-enhanced multi-scale residual network for single image super-resolution
    Sun, Yubin
    Qin, Jiongming
    Gao, Xuliang
    Chai, Shuiqin
    Chen, Bin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (05) : 1417 - 1424
  • [5] Attention-enhanced multi-scale residual network for single image super-resolution
    Yubin Sun
    Jiongming Qin
    Xuliang Gao
    Shuiqin Chai
    Bin Chen
    Signal, Image and Video Processing, 2022, 16 : 1417 - 1424
  • [6] A lightweight multi-scale channel attention network for image super-resolution
    Li, Wenbin
    Li, Juefei
    Li, Jinxin
    Huang, Zhiyong
    Zhou, Dengwen
    NEUROCOMPUTING, 2021, 456 : 327 - 337
  • [7] Multi-scale attention network for image super-resolution
    Wang, Li
    Shen, Jie
    Tang, E.
    Zheng, Shengnan
    Xu, Lizhong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 80
  • [8] Attention augmented multi-scale network for single image super-resolution
    Xiong, Chengyi
    Shi, Xiaodi
    Gao, Zhirong
    Wang, Ge
    APPLIED INTELLIGENCE, 2021, 51 (02) : 935 - 951
  • [9] Attention augmented multi-scale network for single image super-resolution
    Chengyi Xiong
    Xiaodi Shi
    Zhirong Gao
    Ge Wang
    Applied Intelligence, 2021, 51 : 935 - 951
  • [10] Single image super-resolution using multi-scale feature enhancement attention residual network
    Pandey, Garima
    Ghanekar, Umesh
    OPTIK, 2021, 231