SMIGNN: social recommendation with multi-intention knowledge distillation based on graph neural network

被引:1
|
作者
Niu, Yong [1 ]
Xing, Xing [1 ,2 ]
Jia, Zhichun [2 ]
Xin, Mindong [1 ]
Xing, Junye [2 ]
机构
[1] Bohai Univ, Network Informat Ctr, Jinzhou 121013, Liaoning, Peoples R China
[2] Bohai Univ, Coll Informat Sci & Technol, Jinzhou 121013, Liaoning, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 05期
基金
中国国家自然科学基金;
关键词
Social network; Graph neural network; Recommendation system; Knowledge distillation; User intents;
D O I
10.1007/s11227-023-05720-3
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Social recommendation based on user preference aims to make use of user interaction information and mine user's fine-grained preferences for item prediction. However, existing methods have not explored the differences in intentions between various user interactions, and they do not sufficiently model the user social graph and user item graph. In order to solve the above problems, this paper proposes a novel social recommendation model. It utilizes graph neural network to construct separate models for user social model and user item model, capturing multiple intents that drive user preferences. We use node attention and intention attention to calculate feature weights separately to obtain rich features of users and items. To increase the information dissemination between models and improve their overall predictive ability, we introduce knowledge distillation technology. The specific design is to combine the user's dual graph as the teacher model and transfer knowledge to the student model of a single user graph separately. Subsequently, the model is optimized for item recommendation prediction by calculating both the basic loss and distillation loss using the cross-entropy function. Experiments are conducted on Yelp and Ciao datasets, and the results achieve good predictive performance, which has demonstrated the effectiveness of the proposed method.
引用
收藏
页码:6965 / 6988
页数:24
相关论文
共 50 条
  • [21] Knowledge Graph Double Interaction Graph Neural Network for Recommendation Algorithm
    Kang, Shuang
    Shi, Lin
    Zhang, Zhenyou
    APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [22] Friend Recommendation Based on Multi-Social Graph Convolutional Network
    Chen, Liang
    Xie, Yuanzhen
    Zheng, Zibin
    Zheng, Huayou
    Xie, Jingdun
    IEEE ACCESS, 2020, 8 : 43618 - 43629
  • [23] Graph Intention Embedding Neural Network for tag-aware recommendation
    Wang, Dongjing
    Yao, Haojiang
    Yu, Dongjin
    Song, Shiyu
    Weng, He
    Xu, Guandong
    Deng, Shuiguang
    NEURAL NETWORKS, 2025, 184
  • [24] A Recommendation Algorithm for Auto Parts Based on Knowledge Graph and Convolutional Neural Network
    Lin, Junli
    Yin, Shiqun
    Jia, Baolin
    Wang, Ningchao
    BIG DATA, BIGDATA 2022, 2022, 1709 : 57 - 71
  • [25] Maintenance planning recommendation of complex industrial equipment based on knowledge graph and graph neural network
    Xia, Liqiao
    Liang, Yongshi
    Leng, Jiewu
    Zheng, Pai
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 232
  • [26] A two-phase knowledge distillation model for graph convolutional network-based recommendation
    Huang, Zhenhua
    Lin, Zuorui
    Gong, Zheng
    Chen, Yunwen
    Tang, Yong
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (09) : 5902 - 5923
  • [27] Multi-stream graph attention network for recommendation with knowledge graph
    Hu, Zhifei
    Xia, Feng
    JOURNAL OF WEB SEMANTICS, 2024, 82
  • [28] Social Recommendation based on Graph Neural Networks
    Sun, Hongji
    Lin, Lili
    Chen, Riqing
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 489 - 496
  • [29] Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation
    Cui, Chuan
    Shen, Qi
    Zhu, Shixuan
    Pang, Yitong
    Zhang, Yiming
    Gao, Hanning
    Wei, Zhihua
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT II, 2022, : 150 - 165
  • [30] Enhanced Scalable Graph Neural Network via Knowledge Distillation
    Mai, Chengyuan
    Chang, Yaomin
    Chen, Chuan
    Zheng, Zibin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1258 - 1271