Dynamical analysis of an improved FitzHugh-Nagumo neuron model with multiplier-free implementation

被引:66
|
作者
Xu, Quan [1 ]
Chen, Xiongjian [1 ]
Chen, Bei [1 ]
Wu, Huagan [1 ]
Li, Ze [1 ]
Bao, Han [1 ]
机构
[1] Changzhou Univ, Sch Microelect & Control Engn, Changzhou 213164, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiplier-free implementation; Improved FitzHugh-Nagumo neuron model; Nonlinearity; Electrical activity; Hardware experiment; BIFURCATIONS; NETWORK; NERVE; NOISE; EXCITATION; RESONANCE; DRIVEN; CHAOS;
D O I
10.1007/s11071-023-08274-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The cubic-polynomial nonlinearity with N-shaped curve plays a crucial role in generating abundant electrical activities for the original FitzHugh-Nagumo (FHN) neuron model. The pioneer FHN neuron model is efficient in theoretical analysis and numerical simulation for these abundant electrical activities, but analog multipliers are indispensable in hardware implementation since the involvement of cubic-polynomial nonlinearity. Analog multiplier goes against the circuit integration of FHN neuron model due to its huge implementation costs. To avoid the involvement of analog multiplier in hardware implementation, a nonlinear function possessing N-shaped curve and multiplier-free implementation is presented in this paper. To confirm the availability of this nonlinear function in generating electrical activities, numerical simulations and hardware experiments are successfully executed on an improved two-dimensional (2D) FHN neuron model with externally applied stimulus. The results demonstrate that the improved FHN neuron model can generate rich electrical activities of periodic spiking behavior, chaotic behavior, and quasi-periodic behavior. Analog circuit implementation without any multiplier and its hardware experiment show the availability of the proposed nonlinear function, which is appropriate for analog circuit implementation of FHN neuron-based neuromorphic intelligence.
引用
收藏
页码:8737 / 8749
页数:13
相关论文
共 50 条
  • [1] Dynamical analysis of an improved FitzHugh-Nagumo neuron model with multiplier-free implementation
    Quan Xu
    Xiongjian Chen
    Bei Chen
    Huagan Wu
    Ze Li
    Han Bao
    Nonlinear Dynamics, 2023, 111 : 8737 - 8749
  • [2] A CMOS IMPLEMENTATION OF FITZHUGH-NAGUMO NEURON MODEL
    LINARES-BARRANCO, B
    SANCHEZ-SINENCIO, E
    RODRIGUEZVAZQUEZ, A
    HUERTAS, JL
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1991, 26 (07) : 956 - 965
  • [3] Nonlinear dynamical analysis on coupled modified Fitzhugh-Nagumo neuron model
    Mishra, D
    Yadav, A
    Ray, S
    Kalra, PK
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS, 2005, 3496 : 95 - 101
  • [4] Electronic Model of FitzHugh-Nagumo Neuron
    Petrovas, A.
    Lisauskas, S.
    Slepikas, A.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 122 (06) : 117 - 120
  • [5] On a modification of the FitzHugh-Nagumo neuron model
    S. D. Glyzin
    A. Yu. Kolesov
    N. Kh. Rozov
    Computational Mathematics and Mathematical Physics, 2014, 54 : 443 - 461
  • [6] On a Modification of the FitzHugh-Nagumo Neuron Model
    Glyzin, S. D.
    Kolesov, A. Yu
    Rozov, N. Kh
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (03) : 443 - 461
  • [7] A fractional-order improved FitzHugh-Nagumo neuron model
    Kumar, Pushpendra
    Erturk, Vedat Suat
    CHINESE PHYSICS B, 2025, 34 (01)
  • [8] Dynamical Characteristics of the Fractional-Order FitzHugh-Nagumo Model Neuron
    Liu, Yong
    Xie, Yong
    Kang, Yanmei
    Tan, Ning
    Jiang, Jun
    Xu, Jian-Xue
    ADVANCES IN COGNITIVE NEURODYNAMICS (II), 2011, : 253 - 258
  • [9] Dynamical behaviour of FitzHugh-Nagumo neuron model driven by harmonic noise
    Song Yan-Li
    ACTA PHYSICA SINICA, 2010, 59 (04) : 2334 - 2338
  • [10] Dynamical analysis of the FitzHugh-Nagumo model with memristive synapse
    Amiri, Fatemeh Ghoreishian
    Nazarimehr, Fahimeh
    Jafari, Sajad
    Towhidkhah, Farzad
    CHINESE JOURNAL OF PHYSICS, 2024, 89 : 1400 - 1414