Machine learning-based prediction of intraoperative hypoxemia for pediatric patients

被引:5
|
作者
Park, Jung-Bin [1 ,2 ]
Lee, Ho-Jong [1 ]
Yang, Hyun-Lim [2 ]
Kim, Eun-Hee [1 ,2 ]
Lee, Hyung-Chul [1 ,2 ]
Jung, Chul-Woo [1 ,2 ]
Kim, Hee-Soo [1 ,2 ]
机构
[1] Seoul Natl Univ, Coll Med, Dept Anesthesiol & Pain Med, Seoul, South Korea
[2] Seoul Natl Univ Hosp, Dept Anesthesiol & Pain Med, Seoul, South Korea
来源
PLOS ONE | 2023年 / 18卷 / 03期
关键词
PERIOPERATIVE CARDIAC-ARREST; ANESTHESIA; CHILDREN; RISK;
D O I
10.1371/journal.pone.0282303
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundReducing the duration of intraoperative hypoxemia in pediatric patients by means of rapid detection and early intervention is considered crucial by clinicians. We aimed to develop and validate a machine learning model that can predict intraoperative hypoxemia events 1 min ahead in children undergoing general anesthesia. MethodsThis retrospective study used prospectively collected intraoperative vital signs and parameters from the anesthesia ventilator machine extracted every 2 s in pediatric patients undergoing surgery under general anesthesia between January 2019 and October 2020 in a tertiary academic hospital. Intraoperative hypoxemia was defined as oxygen saturation <95% at any point during surgery. Three common machine learning techniques were employed to develop models using the training dataset: gradient-boosting machine (GBM), long short-term memory (LSTM), and transformer. The performances of the models were compared using the area under the receiver operating characteristics curve using randomly assigned internal testing dataset. We also validated the developed models using temporal holdout dataset. Pediatric patient surgery cases between November 2020 and January 2021 were used. The performances of the models were compared using the area under the receiver operating characteristic curve (AUROC). ResultsIn total, 1,540 (11.73%) patients with intraoperative hypoxemia out of 13,130 patients' records with 2,367 episodes were included for developing the model dataset. After model development, 200 (13.25%) of the 1,510 patients' records with 289 episodes were used for holdout validation. Among the models developed, the GBM had the highest AUROC of 0.904 (95% confidence interval [CI] 0.902 to 0.906), which was significantly higher than that of the LSTM (0.843, 95% CI 0.840 to 0.846 P < .001) and the transformer model (0.885, 95% CI, 0.882-0.887, P < .001). In holdout validation, GBM also demonstrated best performance with an AUROC of 0.939 (95% CI 0.936 to 0.941) which was better than LSTM (0.904, 95% CI 0.900 to 0.907, P < .001) and the transformer model (0.929, 95% CI 0.926 to 0.932, P < .001). ConclusionsMachine learning models can be used to predict upcoming intraoperative hypoxemia in real-time based on the biosignals acquired by patient monitors, which can be useful for clinicians for prediction and proactive treatment of hypoxemia in an intraoperative setting.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Machine Learning-based Corporate Socia Responsibility Prediction
    Teoh, T-T
    Heng, Q. K.
    Chia, J. J.
    Shie, J. M.
    Liaw, S. W.
    Yang, M.
    Nguwi, Y-Y
    [J]. PROCEEDINGS OF THE IEEE 2019 9TH INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) ROBOTICS, AUTOMATION AND MECHATRONICS (RAM) (CIS & RAM 2019), 2019, : 501 - 505
  • [42] Machine Learning-Based Prediction of the Excitation Wavelength of Phosphors
    Sahu, Sunil K.
    Shrivastav, Anil
    Swamy, N. K.
    Dubey, Vikas
    Halwar, D. K.
    Kumar, M. Tanooj
    Rao, M. C.
    [J]. JOURNAL OF APPLIED SPECTROSCOPY, 2024, 91 (03) : 669 - 677
  • [43] Machine Learning-Based Prediction of Antiferromagnetic Skyrmion Formation
    Saini, Shipra
    Shukla, Alok Kumar
    Nehete, Hemkant
    Bindal, Namita
    Kaushik, Brajesh Kumar
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (04) : 2774 - 2780
  • [44] Machine learning-based prediction models for postpartum hemorrhage
    Venkatesh, Kartik K.
    Strauss, Robert
    Grotegut, Chad
    Heine, Phillips
    Stamilio, David M.
    Menard, Kathryn
    Jelovsek, Eric
    [J]. AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2020, 222 (01) : S175 - S176
  • [45] Machine Learning-Based Prediction of the Martensite Start Temperature
    Wentzien, Marcel
    Koch, Marcel
    Friedrich, Thomas
    Ingber, Jerome
    Kempka, Henning
    Schmalzried, Dirk
    Kunert, Maik
    [J]. STEEL RESEARCH INTERNATIONAL, 2024,
  • [46] A Machine Learning-based Approach for The Prediction of Electricity Consumption
    Dinh Hoa Nguyen
    Anh Tung Nguyen
    [J]. 2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 1301 - 1306
  • [47] Machine Learning-based RSSI Prediction in Factory Environments
    Webber, Julian
    Suga, Norisato
    Ano, Susumu
    Jou, Yafei
    Mehbodniya, Abolfazl
    Higashimori, Toshihide
    Yano, Kazuto
    Suzuki, Yoshinori
    [J]. PROCEEDINGS OF 2019 25TH ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC), 2019, : 195 - 200
  • [48] Machine learning-based seawater concentration pathway prediction
    Hu, Fang
    Xu, Xingyong
    Liang, Jun
    Yang, Changguo
    Huang, Mingfang
    Su, Qiao
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2021, 94
  • [49] Machine learning-based approaches for disease gene prediction
    Duc-Hau Le
    [J]. BRIEFINGS IN FUNCTIONAL GENOMICS, 2020, 19 (5-6) : 350 - 363
  • [50] A Machine Learning-Based Approach for Crop Price Prediction
    Gururaj, H. L.
    Janhavi, V.
    Lakshmi, H.
    Soundarya, B. C.
    Paramesha, K.
    Ramesh, B.
    Rajendra, A. B.
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (03)