Modeling and multiphysics analysis for electrochemical CO2 reduction in solid-electrolyte reactors

被引:2
|
作者
Zhang, Weiqi [1 ]
Shan, Haowen [1 ]
Liu, Yajiao [3 ]
Xu, Qian [1 ]
Su, Huaneng [1 ]
Ma, Qiang [1 ]
Liu, Huiyuan [1 ]
Hua, Lun [3 ]
Li, Zhuo [1 ,2 ,3 ]
机构
[1] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China
[2] Chongqing Univ, Key Lab Low Grade Energy Utilizat Technol & Syst, Minist Educ China, Chongqing 400044, Peoples R China
[3] Tsinghua Univ, Suzhou Automot Res Inst, Suzhou 215200, Peoples R China
关键词
Solid-electrolyte reactor; ElectrochemicalCO2; reduction; Modeling study; Multiphysics; CONVERSION;
D O I
10.1016/j.cplett.2023.141031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mass transfer and overportential distribution of solid-electrolyte reactors, an electrochemical CO2 conversion equipment, are analyzed by a multiphysics model. It shows that the ohmic loss caused by charge transport in porous solid electrolytes (usually thought to be a major bottleneck of solid-electrolyte reactors) begins to show its significantly negative effect on reactor performance till current densities reach 400 mA/cm(2), much higher than that required for relevant commercial operation (similar to 200 mA/cm(2)). Thus, we suggest much attention should still be put on how to decrease thermodynamics (similar to 1.46 V) and activation losses (>1.4 V) of reactors, rather than developing elaborate structures and materials of porous solid electrolytes to decrease ohmic losses.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Continuous carbon capture in an electrochemical solid-electrolyte reactor
    Zhu, Peng
    Wu, Zhen-Yu
    Elgazzar, Ahmad
    Dong, Changxin
    Wi, Tae-Ung
    Chen, Feng-Yang
    Xia, Yang
    Feng, Yuge
    Shakouri, Mohsen
    Kim, Jung Yoon
    Fang, Zhiwei
    Hatton, T. Alan
    Wang, Haotian
    NATURE, 2023, 618 (7967) : 959 - +
  • [42] Electrochemical reduction of CO2 in solid oxide electrolysis cells
    Zhan, Zhongliang
    Zhao, Lin
    JOURNAL OF POWER SOURCES, 2010, 195 (21) : 7250 - 7254
  • [43] Electrochemical reduction of CO2 in solid oxide electrolysis cells
    Zhang, Lixiao
    Hu, Shiqing
    Zhu, Xuefeng
    Yang, Weishen
    JOURNAL OF ENERGY CHEMISTRY, 2017, 26 (04) : 593 - 601
  • [44] Electrochemical reduction of CO2 in solid oxide electrolysis cells
    Lixiao Zhang
    Shiqing Hu
    Xuefeng Zhu
    Weishen Yang
    Journal of Energy Chemistry , 2017, (04) : 593 - 601
  • [45] Continuous carbon capture in an electrochemical solid-electrolyte reactor
    Peng Zhu
    Zhen-Yu Wu
    Ahmad Elgazzar
    Changxin Dong
    Tae-Ung Wi
    Feng-Yang Chen
    Yang Xia
    Yuge Feng
    Mohsen Shakouri
    Jung Yoon (Timothy) Kim
    Zhiwei Fang
    T. Alan Hatton
    Haotian Wang
    Nature, 2023, 618 : 959 - 966
  • [46] Overall mass balance evaluation of electrochemical reactors: The case of CO2 reduction
    Blom, Martijn J. W.
    van Swaaij, Wim P. M.
    Mul, Guido
    Kersten, Sascha R. A.
    ELECTROCHIMICA ACTA, 2020, 333
  • [47] Author Correction: Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices
    Chuan Xia
    Peng Zhu
    Qiu Jiang
    Ying Pan
    Wentao Liang
    Eli Stavitski
    Husam N. Alshareef
    Haotian Wang
    Nature Energy, 2020, 5 : 90 - 90
  • [48] Electrochemical reactors for CO2 reduction: From acid media to gas phase
    Perez-Rodriguez, S.
    Barreras, F.
    Pastor, E.
    Lazaro, M. J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (43) : 19756 - 19765
  • [49] Multilayer Zn nanosheets promote electrochemical CO2 reduction to CO in KCl electrolyte
    Wang, Chen
    He, Ao
    Wang, Na
    Sun, Hao
    Zhang, Nianbo
    Ma, Yunqian
    Yan, Guihuan
    Xue, Rong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (03):
  • [50] Modeling and Simulating Electrochemical Reduction of CO2 in a Microfluidic Cell
    Wu, Kunna
    Birgersson, Erik
    Kenis, Paul J. A.
    Karimi, Iftekhar A.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON FOUNDATIONS OF COMPUTER-AIDED PROCESS DESIGN, 2014, 34 : 639 - 644