Identifiability and singular locus of secant varieties to Grassmannians

被引:0
|
作者
Galgano, Vincenzo [1 ]
Staffolani, Reynaldo [1 ]
机构
[1] Univ Trento, Dipartimento Matemat, Via Sommar 14, I-38123 Trento, Italy
关键词
Singular locus; Secant variety; Grassmannian; Homogeneous spaces; Identifiability; Tangential-identifiability; Terracini locus; TENSORS;
D O I
10.1007/s13348-023-00429-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Secant varieties are among the main protagonists in tensor decomposition, whose study involves both pure and applied mathematic areas. Grassmannians are the building blocks for skewsymmetric tensors. Although they are ubiquitous in the literature, the geometry of their secant varieties is not completely understood. In this work we determine the singular locus of the secant variety of lines to a Grassmannian Gr(k, V) using its structure as SL(V)-variety. We solve the problems of identifiability and tangential-identifiability of points in the secant variety: as a consequence, we also determine the second Terracini locus to a Grassmannian.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Equations for secant varieties of Veronese and other varieties
    J. M. Landsberg
    Giorgio Ottaviani
    [J]. Annali di Matematica Pura ed Applicata, 2013, 192 : 569 - 606
  • [42] Secant varieties of the varieties of reducible hypersurfaces in Pn
    Catalisano, M. V.
    Geramita, A. V.
    Gimigliano, A.
    Harbourne, B.
    Migliore, J.
    Nagel, U.
    Shin, Y. S.
    [J]. JOURNAL OF ALGEBRA, 2019, 528 : 381 - 438
  • [43] On the ideals of secant varieties to certain rational varieties
    Catalisano, M. V.
    Geramita, A. V.
    Gimigliano, A.
    [J]. JOURNAL OF ALGEBRA, 2008, 319 (05) : 1913 - 1931
  • [44] Equations for secant varieties of Veronese and other varieties
    Landsberg, J. M.
    Ottaviani, Giorgio
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (04) : 569 - 606
  • [45] CURVES IN GRASSMANNIANS AND FLAG VARIETIES
    BALLICO, E
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1995, 9A (02): : 313 - 327
  • [46] REFLEXIVITY OF GRASSMANNIANS AND SEGRE VARIETIES
    HEFEZ, A
    THORUP, A
    [J]. COMMUNICATIONS IN ALGEBRA, 1987, 15 (06) : 1095 - 1108
  • [47] Secant varieties and birational geometry
    Vermeire, P
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2002, 242 (01) : 75 - 95
  • [48] Secant varieties of Segre-Veronese varieties
    Raicu, Claudiu
    [J]. ALGEBRA & NUMBER THEORY, 2012, 6 (08) : 1817 - 1868
  • [49] GENERATING VARIETIES FOR AFFINE GRASSMANNIANS
    Littig, Peter J.
    Mitchell, Stephen A.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (07) : 3717 - 3731
  • [50] The secant varieties of nilpotent orbits
    Omoda, Yasuhiro
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2008, 48 (01): : 49 - 71