Online Payment Fraud Detection Model Using Machine Learning Techniques

被引:5
|
作者
Almazroi, Abdulwahab Ali [1 ]
Ayub, Nasir [2 ]
机构
[1] Univ Jeddah, Coll Comp & Informat Technol Khulais, Dept Informat Technol, Jeddah 21959, Saudi Arabia
[2] Air Univ, Dept Creat Technol, Islamabad 44000, Pakistan
来源
IEEE ACCESS | 2023年 / 11卷
关键词
Financial transaction fraud; deep learning; fraud defense mechanism; detection; optimization methods; classification; ResNeXt; cyber attacks; FOREST;
D O I
10.1109/ACCESS.2023.3339226
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In a world where wireless communications are critical for transferring massive quantities of data while protecting against interference, the growing possibility of financial fraud has become a significant concern. The ResNeXt-embedded Gated Recurrent Unit (GRU) model (RXT) is a unique artificial intelligence approach precisely created for real-time financial transaction data processing. Motivated by the need to address the rising threat of financial fraud, which poses major risks to financial institutions and customers, our artificial intelligence technique takes a systematic approach. We commence the process with artificial intelligence data input and preprocessing, mitigating data imbalance using the SMOTE. Feature extraction uses an artificial intelligence ensemble approach that combines autoencoders and ResNet (EARN) to reveal critical data patterns, while feature engineering further enhances the model's discriminative capabilities. The core of our artificial intelligence classification task lies in the RXT model, fine-tuned with hyperparameters using the Jaya optimization algorithm (RXT-J). Our artificial intelligence model undergoes comprehensive evaluation on three authentic financial transaction datasets, consistently outperforming existing algorithms by a substantial margin of 10% to 18% across various evaluation metrics while maintaining impressive computational efficiency. This pioneering artificial intelligence research represents a significant advancement in the ongoing battle against financial fraud, promising heightened security and optimized efficiency in financial transactions. In defense against wireless communication interference, our artificial intelligence work aims to strengthen security, data availability, reliability, and stability against cyber warfare attacks within the financial industry.
引用
收藏
页码:137188 / 137203
页数:16
相关论文
共 50 条
  • [21] Fraud Detection Using Machine Learning and Deep Learning
    Gandhar A.
    Gupta K.
    Pandey A.K.
    Raj D.
    SN Computer Science, 5 (5)
  • [22] Fraud Detection in Blockchains using Machine Learning
    Kilic, Baran
    Sen, Alper
    Ozturan, Can
    2022 FOURTH INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA), 2022, : 214 - 218
  • [23] Healthcare Fraud Detection using Machine Learning
    Prova, Nuzhat Noor Islam
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 1119 - 1123
  • [24] A Hybrid Deep Learning Model For Online Fraud Detection
    Xiong Kewei
    Peng, Binhui
    Jiang, Yang
    Lu, Tiying
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 431 - 434
  • [25] Food fraud detection in Octopus mimus using hyperspectral imaging and machine learning techniques
    William Vera
    Himer Avila-George
    Jorge Mogollón
    Tony Chuquizuta
    Wilson Castro
    Neural Computing and Applications, 2025, 37 (4) : 2369 - 2381
  • [26] RETRACTED: Financial Fraud Detection in Healthcare Using Machine Learning and Deep Learning Techniques (Retracted Article)
    Mehbodniya, Abolfazl
    Alam, Izhar
    Pande, Sagar
    Neware, Rahul
    Rane, Kantilal Pitambar
    Shabaz, Mohammad
    Madhavan, Mangena Venu
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [27] Developing a Credit Card Fraud Detection Model using Machine Learning Approaches
    Khan, Shahnawaz
    Mishra, Bharavi
    Alourani, Abdullah
    Ali, Ashraf
    Kamal, Mustafa
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (03) : 411 - 418
  • [28] Correction to: Fraud Detection Using Machine Learning and Deep Learning
    Akash Gandhar
    Kapil Gupta
    Aman Kumar Pandey
    Dharm Raj
    SN Computer Science, 5 (7)
  • [29] Medicare Fraud Detection using Machine Learning Methods
    Bauder, Richard A.
    Khoshgoftaar, Taghi M.
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 858 - 865
  • [30] Fraud Claims Detection in Insurance Using Machine Learning
    Kalra, Hritik
    Singh, Ranvir
    Kumar, T. Senthil
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 327 - 331