Reply to: machine learning in renal cell carcinoma research: promise and pitfalls of 'renalizing' the potential of artificial intelligence

被引:0
|
作者
de Hauteclocque, Astrid Boulenger [1 ]
Ferrer, Loic [2 ]
Margue, Gaelle [1 ]
Etchepare, Guillaume [2 ]
Colin, Thierry [2 ]
Bernhard, Jean-Christophe [1 ]
机构
[1] Ctr Hosp Univ Bordeaux, Grp Hosp Pellegrin, Bordeaux, France
[2] SOPHiA GENET SAS, Bidart, France
关键词
D O I
10.1111/bju.16116
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:713 / 714
页数:2
相关论文
共 50 条
  • [31] Artificial intelligence, machine learning and deep learning: Potential resources for the infection clinician
    Theodosiou, Anastasia A.
    Read, Robert C.
    JOURNAL OF INFECTION, 2023, 87 (04) : 287 - 294
  • [32] Navigating advanced renal cell carcinoma in the era of artificial intelligence
    Najem, Elie J.
    Shaikh, Mohd Javed S.
    Shinagare, Atul B.
    Krajewski, Katherine M.
    CANCER IMAGING, 2025, 25 (01)
  • [33] Potential Applications of Artificial Intelligence and Machine Learning in Radiochemistry and Radiochemical Engineering
    Webb, E. William
    Scott, Peter J. H.
    PET CLINICS, 2021, 16 (04) : 525 - 532
  • [34] Key concepts, common pitfalls, and best practices in artificial intelligence and machine learning: focus on radiomics
    Kocak, Burak
    DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2022, 28 (05) : 450 - 462
  • [35] Artificial Intelligence and Machine Learning for Improving Glycemic Control in Diabetes: Best Practices, Pitfalls, and Opportunities
    Jacobs, Peter G.
    Herrero, Pau
    Facchinetti, Andrea
    Vehi, Josep
    Kovatchev, Boris
    Breton, Marc D.
    Cinar, Ali
    Nikita, Konstantina S.
    Doyle, Francis J., III
    Bondia, Jorge
    Battelino, Tadej
    Castle, Jessica R.
    Zarkogianni, Konstantia
    Narayan, Rahul
    Mosquera-Lopez, Clara
    IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2024, 17 : 19 - 41
  • [36] Musculoskeletal fracture detection: artificial intelligence and machine learning-based diagnostic advantages and pitfalls
    Archer, Truman
    Archer, Sawyer
    Shah, Samir S.
    EUROPEAN RADIOLOGY, 2024,
  • [37] Deep Machine Learning-A New Frontier in Artificial Intelligence Research
    Arel, Itamar
    Rose, Derek C.
    Karnowski, Thomas P.
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2010, 5 (04) : 13 - 18
  • [38] The Impact of Artificial Intelligence and Machine Learning on Energetic Materials Research and Development
    Udaykumar, H. S.
    Wurster, Sebastian
    Tomaschewski, Daniel
    Baek, Stephen
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2024, 49 (10-11)
  • [39] Machine learning and artificial intelligence to aid climate change research and preparedness
    Huntingford, Chris
    Jeffers, Elizabeth S.
    Bonsall, Michael B.
    Christensen, Hannah M.
    Lees, Thomas
    Yang, Hui
    ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (12):
  • [40] Practical Guide to Machine Learning and Artificial Intelligence in Surgical Education Research
    Hashimoto, Daniel A.
    Varas, Julian
    Schwartz, Todd A.
    JAMA SURGERY, 2024, 159 (04) : 455 - 456