Bearing Fault Diagnosis Based on Optimized Deep Hybrid Kernel Extreme Learning Machine

被引:1
|
作者
Qi, Zhenyu [1 ]
Ma, Liling [2 ]
Wang, Junzheng [2 ]
Feng, Shanhao [3 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing, Peoples R China
[2] Beijing Inst Technol, Sch Automat, Key Lab Dr & Control Servo Motion Syst, Minist Ind & Informat Technol, Beijing, Peoples R China
[3] China Aerosp Sci & Ind Corp, China Nanjing Chenguang Machinery Mfg, Nanjing, Peoples R China
关键词
bearing fault diagnosis; hybrid kernel extreme learning machine; deep learning; sparrow search algorithm;
D O I
10.1109/CCDC58219.2023.10326628
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bearings are important components in mechanical equipment. Fault diagnosis of bearings is of great significance. High accuracy and strong adaptability are necessary for a bearing fault diagnosis method. In this paper, a fault diagnosis method based on an optimized deep hybrid kernel extreme learning machine is proposed. This method adds the idea of deep learning to the traditional machine learning method, and has the characteristics of simple implementation and strong feature extraction ability. In addition, the sparrow search optimization algorithm is used to optimize the parameters of the diagnostic model, so that the model can achieve the best effectiveness. Experiments show that our proposed method can achieve satisfying performance on the same working condition, different working conditions and imbalanced datasets.
引用
下载
收藏
页码:3033 / 3038
页数:6
相关论文
共 50 条
  • [21] Extreme learning machine with kernel model based on deep learning
    Shifei Ding
    Lili Guo
    Yanlu Hou
    Neural Computing and Applications, 2017, 28 : 1975 - 1984
  • [22] Extreme learning machine with kernel model based on deep learning
    Ding, Shifei
    Guo, Lili
    Hou, Yanlu
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (08): : 1975 - 1984
  • [23] Bayesian-Optimized Hybrid Kernel SVM for Rolling Bearing Fault Diagnosis
    Song, Xinmin
    Wei, Weihua
    Zhou, Junbo
    Ji, Guojun
    Hussain, Ghulam
    Xiao, Maohua
    Geng, Guosheng
    SENSORS, 2023, 23 (11)
  • [24] Bearing Fault Diagnosis Based on Artificial Intelligence Methods: Machine Learning and Deep Learning
    Ghorbel, Ahmed
    Eddai, Sarra
    Limam, Bouthayna
    Feki, Nabih
    Haddar, Mohamed
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024,
  • [25] Study on Fault Diagnosis for Bearing Based on VMD-SVD and Extreme Learning Machine
    Zhou, Qiang
    Qin, Yong
    Wang, Zhipeng
    Jia, Limin
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL AND INFORMATION TECHNOLOGIES FOR RAIL TRANSPORTATION (EITRT) 2017: TRANSPORTATION, 2018, 483 : 87 - 97
  • [26] A novel Roller Bearing Fault Diagnosis Method based on the Wavelet Extreme Learning Machine
    Xin Yu
    Li Shunming
    Wang Jingrui
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 504 - 509
  • [27] Aero Engine Fault Diagnosis Using an Optimized Extreme Learning Machine
    Yang, Xinyi
    Pang, Shan
    Shen, Wei
    Lin, Xuesen
    Jiang, Keyi
    Wang, Yonghua
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2016, 2016
  • [28] Bearing Fault Diagnosis Using Machine Learning and Deep Learning Techniques
    Dhanush, N. Sai
    Ambika, P. S.
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 309 - 321
  • [29] A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis
    Sohaib, Muhammad
    Kim, Cheol-Hong
    Kim, Jong-Myon
    SENSORS, 2017, 17 (12)
  • [30] OLTC Fault Diagnosis Method Based on Time Domain Analysis and Kernel Extreme Learning Machine
    Yan, Yan
    Ma, Hongzhong
    Song, Dongdong
    Feng, Yang
    Duan, Dawei
    Journal of Computers (Taiwan), 2022, 33 (06) : 91 - 106