An end-to-end framework based on acoustic emission for welding penetration prediction

被引:1
|
作者
Zhang, Yuxuan
Chen, Bo [1 ]
Tan, Caiwang
Song, Xiaoguo
Zhao, Hongyun
机构
[1] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China
关键词
Intelligent welding; Acoustic emission; Penetration classification; Laser hybrid welding; Convolutional neural network; REAL-TIME;
D O I
10.1016/j.jmapro.2023.10.061
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The adverse effects of inadequate welding penetration on the service performance of welded assemblies have raised significant concerns. In this study, we explore the benefits of acoustic emission (AE) sensors for monitoring the laser-arc hybrid weld penetration state during welding processes. The underlying mechanisms of AE signal generation under different penetration states are elaborated, and the feasibility of using time-frequency domain features for monitoring penetration state is validated. Building upon these findings, we propose an end-to-end framework named WAENet. This framework incorporates an automated optimization module for signal processing and time-frequency domain feature extraction, as well as an improved modular convolutional neural network (CNN) for recognition. To enhance the CNN's performance, techniques such as grouped convolution, depth-wise separable convolution, and global average pooling are employed. Furthermore, the training process of the CNN also considers the involvement of hyperparameters related to signal processing and feature extraction, as proposed in this article. WAENet achieves an average accuracy of 99.62 % in identifying the penetration states, which outperforms other models that use alternative feature extraction or classification techniques for comparison. These studies expand the application scope of AE and CNN in the field of intelligent welding.
引用
收藏
页码:411 / 421
页数:11
相关论文
共 50 条
  • [31] An end-to-end configuration-based framework for automatic SWS composition
    Albert, Patrick
    Henocque, Laurent
    Kleiner, Mathias
    20TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL 1, PROCEEDINGS, 2008, : 351 - +
  • [32] AutoText: An End-to-End AutoAI Framework for Text
    Chaudhary, Arunima
    Issak, Alayt
    Kate, Kiran
    Katsis, Yannis
    Valente, Abel
    Wang, Dakuo
    Evfimievski, Alexandre
    Gurajada, Sairam
    Kawas, Ban
    Malossi, Cristiano
    Popa, Lucian
    Pedapati, Tejaswini
    Samulowitz, Horst
    Wistuba, Martin
    Li, Yunyao
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 16001 - 16003
  • [33] An end-to-end framework for safe software development
    Hussein, Mahmoud
    Nouacer, Reda
    Radermacher, Ansgar
    Puccetti, Armand
    Gaston, Christophe
    Rapin, Nicolas
    MICROPROCESSORS AND MICROSYSTEMS, 2018, 62 : 41 - 49
  • [34] An End-to-End Reliability Framework of the Internet of Things
    Azghiou, Kamal
    El Mouhib, Manal
    Koulali, Mohammed-Amine
    Benali, Abdelhamid
    SENSORS, 2020, 20 (09)
  • [35] Reliable End-to-End APNs Interaction Framework
    Singh, Ravendra
    Chatterjee, Indrani
    Smrati
    2014 INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2014, : 921 - 926
  • [36] A Framework for end-to-end approach to Systems Integration
    Jain R.
    Chandrasekaran A.
    Erol O.
    International Journal of Industrial and Systems Engineering, 2010, 5 (01) : 79 - 109
  • [37] A framework for end-to-end verification for digital microfluidics
    Pushpita Roy
    Ansuman Banerjee
    Bhargab B. Bhattacharya
    Innovations in Systems and Software Engineering, 2021, 17 : 231 - 245
  • [38] A Framework for End-to-End Ontology Management System
    Walisadeera, Anusha Indika
    Ginige, Athula
    Wikramanayake, Gihan Nilendra
    Madushanka, A. L. Pamuditha
    Udeshini, A. A. Shanika
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2015, PT I, 2015, 9155 : 529 - 544
  • [39] An intelligent framework for end-to-end rockfall detection
    Zoumpekas, Thanasis
    Puig, Anna
    Salamo, Maria
    Garcia-Selles, David
    Blanco Nunez, Laura
    Guinau, Marta
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (11) : 6471 - 6502
  • [40] PRIMA: an End-to-End Framework for Privacy at Scale
    Antonatos, Spiros
    Braghin, Stefano
    Holohan, Naoise
    Gkoufas, Yiannis
    Mac Aonghusa, Pol
    2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2018, : 1531 - 1542