Multispectral Food Classification and Caloric Estimation Using Convolutional Neural Networks

被引:3
|
作者
Lee, Ki-Seung [1 ]
机构
[1] Konkuk Univ, Dept Elect & Elect Engn, 1 Hwayang dong, Seoul 05029, South Korea
关键词
multispectral imaging; convolutional neural network; food analysis; non-invasive analysis; dietary assessment; data fusion; SUGAR CONTENT; PREDICTION; RECORDS; SYSTEM; BEEF;
D O I
10.3390/foods12173212
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Continuous monitoring and recording of the type and caloric content of ingested foods with a minimum of user intervention is very useful in preventing metabolic diseases and obesity. In this paper, automatic recognition of food type and caloric content was achieved via the use of multi-spectral images. A method of fusing the RGB image and the images captured at ultra violet, visible, and near-infrared regions at center wavelengths of 385, 405, 430, 470, 490, 510, 560, 590, 625, 645, 660, 810, 850, 870, 890, 910, 950, 970, and 1020 nm was adopted to improve the accuracy. A convolutional neural network (CNN) was adopted to classify food items and estimate the caloric amounts. The CNN was trained using 10,909 images acquired from 101 types. The objective functions including classification accuracy and mean absolute percentage error (MAPE) were investigated according to wavelength numbers. The optimal combinations of wavelengths (including/excluding the RGB image) were determined by using a piecewise selection method. Validation tests were carried out on 3636 images of the food types that were used in training the CNN. As a result of the experiments, the accuracy of food classification was increased from 88.9 to 97.1% and MAPEs were decreased from 41.97 to 18.97 even when one kind of NIR image was added to the RGB image. The highest accuracy for food type classification was 99.81% when using 19 images and the lowest MAPE for caloric content was 10.56 when using 14 images. These results demonstrated that the use of the images captured at various wavelengths in the UV and NIR bands was very helpful for improving the accuracy of food classification and caloric estimation.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] DYNAMIC SCENE CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS
    Gangopadhyay, Aalok
    Tripathi, Shivam Mani
    Jindal, Ishan
    Raman, Shanmuganathan
    2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 1255 - 1259
  • [42] Audio classification using braided convolutional neural networks
    Sinha, Harsh
    Awasthi, Vinayak
    Ajmera, Pawan K.
    IET SIGNAL PROCESSING, 2020, 14 (07) : 448 - 454
  • [43] Relation Classification Using Revised Convolutional Neural Networks
    Li, Bo
    Zhao, Xiang
    Wang, Shuai
    Lin, Weihong
    Xiao, Weidong
    2017 4TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2017, : 1438 - 1443
  • [44] Articulatory Feature Classification Using Convolutional Neural Networks
    Merkx, Danny
    Scharenborg, Odette
    19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 2142 - 2146
  • [45] SHADOW PUPPETRY CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS
    He, Mingyun
    Song, Xinhao
    Kuang, Ping
    Li, Fan
    Wang, Haoshuang
    2018 15TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2018, : 27 - 30
  • [46] LDPC Code Classification using Convolutional Neural Networks
    Comar, Bradley
    2020 29TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2020, : 115 - 120
  • [47] Fish Detection and Classification Using Convolutional Neural Networks
    Rekha, B. S.
    Srinivasan, G. N.
    Reddy, Sravan Kumar
    Kakwani, Divyanshu
    Bhattad, Niraj
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 1221 - 1231
  • [48] Skin cancer classification using Convolutional neural networks
    Subramanian, R. Raja
    Achuth, Dintakurthi
    Kumar, P. Shiridi
    Reddy, Kovvuru Naveen Kumar
    Amara, Srikar
    Chowdary, Adusumalli Suchan
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 13 - 19
  • [49] Arithmetic Circuit Classification Using Convolutional Neural Networks
    Silva, Leandro Maia
    Andrade, Fabricio Vivas
    Fernandes, Antonio Otavio
    Menezes Vieira, Luiz Filipe
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [50] A-phase classification using convolutional neural networks
    Edgar R. Arce-Santana
    Alfonso Alba
    Martin O. Mendez
    Valdemar Arce-Guevara
    Medical & Biological Engineering & Computing, 2020, 58 : 1003 - 1014