REGULARITY OF AML FUNCTIONS IN TWO-DIMENSIONAL NORMED SPACES

被引:0
|
作者
Tapia-Garcia, Sebastian [1 ,2 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, CNRS, UMR 5251, Cours Liberat 351, Talence, France
[2] Univ Chile, CMM, CNRS, Dept Ingn Matemat,IRL 2807, Beauchef 851, Santiago, Chile
关键词
regularity of Lipschitz functions; absolutely minimizing Lipschitz functions; finite normed spaces; INFINITY-HARMONIC-FUNCTIONS; LIPSCHITZ EXTENSIONS;
D O I
10.1017/S1446788722000088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Savin ['C-1 regularity for infinity harmonic functions in two dimensions', Arch. Ration. Mech. Anal. 3(176) (2005), 351-361] proved that every planar absolutely minimizing Lipschitz (AML) function is continuously differentiable whenever the ambient space is Euclidean. More recently, Peng et al. ['Regularity of absolute minimizers for continuous convex Hamiltonians', J. Differential Equations 274 (2021), 1115-1164] proved that this property remains true for planar AML functions for certain convex Hamiltonians, using some Euclidean techniques. Their result can be applied to AML functions defined in two-dimensional normed spaces with differentiable norm. In this work we develop a purely non-Euclidean technique to obtain the regularity of planar AML functions in two-dimensional normed spaces with differentiable norm.
引用
收藏
页码:406 / 430
页数:25
相关论文
共 50 条
  • [31] FUNCTIONS AND REGULARITY OF TOPOLOGICAL SPACES
    Duszynski, Zbigniew
    TAMKANG JOURNAL OF MATHEMATICS, 2009, 40 (01): : 67 - 74
  • [32] SMALLNESS OF THE SET OF CRITICAL VALUES OF DISTANCE FUNCTIONS IN TWO-DIMENSIONAL EUCLIDEAN AND RIEMANNIAN SPACES
    Rataj, Jan
    Zajicek, Ludek
    MATHEMATIKA, 2020, 66 (02) : 297 - 324
  • [33] Generalized Hessian for C1,1 functions in infinite dimensional normed spaces
    Institute of Mathematics, L. Kossuth University, Pf. 12, H-4010 Debrecen, Hungary
    不详
    Mathematical Programming, Series B, 1996, 74 (01): : 59 - 78
  • [34] On the two-dimensional theta functions of the Borweins
    Alaca, Ayse
    Alaca, Saban
    Williams, Kenneth S.
    ACTA ARITHMETICA, 2006, 124 (02) : 177 - 195
  • [35] Bounds in Normed Spaces Using Convex Functions
    Sababheh, Mohammad
    Furuichi, Shigeru
    Minculete, Nicusor
    Moradi, Hamid Reza
    IRANIAN JOURNAL OF SCIENCE, 2025, 49 (02) : 419 - 426
  • [36] ON THE NUMBER OF TWO-DIMENSIONAL THRESHOLD FUNCTIONS
    Alekseyev, Max A.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (04) : 1617 - 1631
  • [37] Finsler functions for two-dimensional sprays
    Crampin, Mike
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (3-4): : 435 - 452
  • [38] EXPONENTIAL SERIES IN NORMED SPACES OF ANALYTIC FUNCTIONS
    Bashmakov, R. A.
    Isaev, K. P.
    Makhota, A. A.
    UFA MATHEMATICAL JOURNAL, 2021, 13 (03): : 27 - 35
  • [39] Inner γ-convex functions in normed linear spaces
    Phu H.X.
    Vietnam Journal of Mathematics, 2015, 43 (2) : 487 - 500
  • [40] METRICALLY CONVEX-FUNCTIONS IN NORMED SPACES
    KRYNSKI, S
    STUDIA MATHEMATICA, 1993, 105 (01) : 1 - 11