Multi-agent graph reinforcement learning for decentralized Volt-VAR control in power distribution systems

被引:2
|
作者
Hu, Daner [1 ]
Li, Zichen [1 ]
Ye, Zhenhui [1 ]
Peng, Yonggang [1 ]
Xi, Wei [2 ]
Cai, Tiantian [2 ]
机构
[1] Zhejiang Univ, Coll Elect Engn, Hangzhou 310027, Peoples R China
[2] China Southern Power Grid, Digital Grid Res Inst, Guangzhou 510670, Peoples R China
基金
国家重点研发计划;
关键词
Decentralized training; Graph network; Multi-agent deep reinforcement learning; Power distribution system; Volt/VAR control; ACTIVE DISTRIBUTION NETWORKS; HIGH PENETRATION;
D O I
10.1016/j.ijepes.2023.109531
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Volt/Var control (VVC) is a crucial function in power distribution systems to minimize power loss and maintain voltages within allowable limits. However, incomplete and inaccurate information about the distribution network makes model-based VVC methods difficult to implement in practice. In this paper, we propose a novel multi-agent graph-based deep reinforcement learning (DRL) algorithm named MASAC-HGRN to address the VVC problem under partial observation constraints. Our proposed algorithm divides the power distribution system into several regions, each region treated as an agent. Unlike traditional model-based or global-observation-based DRL methods, our proposed method leverages a practical decentralized training and decentralized execution (DTDE) paradigm to address the partial observation constraints. The well-trained agents gather information only from their interconnected neighbors and realize decentralized local control. Numerical studies with IEEE 33-bus and 123-bus distribution test feeders demonstrate that our proposed MASAC-HGRN algorithm outperforms the state-of-art RL algorithms and traditional model-based approaches in terms of VVC performance. Moreover, the DTDE framework exhibits flexibility and robustness in extensive robustness experiments.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Two-Stage Volt/Var Control in Active Distribution Networks With Multi-Agent Deep Reinforcement Learning Method
    Sun, Xianzhuo
    Qiu, Jing
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (04) : 2903 - 2912
  • [22] Simplified Deep Reinforcement Learning Based Volt-var Control of Topologically Variable Power System
    Qing Ma
    Changhong Deng
    Journal of Modern Power Systems and Clean Energy, 2023, 11 (05) : 1396 - 1404
  • [23] Learning Decentralized Traffic Signal Controllers With Multi-Agent Graph Reinforcement Learning
    Zhang, Yao
    Yu, Zhiwen
    Zhang, Jun
    Wang, Liang
    Luan, Tom H.
    Guo, Bin
    Yuen, Chau
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 7180 - 7195
  • [24] Advances in Volt-var Control Approaches in Utility Distribution Systems
    Padullaparti, Harsha V.
    Quan Nguyen
    Santoso, Surya
    2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016,
  • [25] Simplified Deep Reinforcement Learning Based Volt-var Control of Topologically Variable Power System
    Ma, Qing
    Deng, Changhong
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2023, 11 (05) : 1396 - 1404
  • [26] Fast Volt-VAR Control on PV Dominated Distribution Systems
    Zhang, Wenbo
    Baran, Mesut
    De, Ankan
    Bhattacharya, Subhashish
    2014 IEEE PES T&D CONFERENCE AND EXPOSITION, 2014,
  • [27] Decentralized Incremental Fuzzy Reinforcement Learning for Multi-Agent Systems
    Hamzeloo, Sam
    Jahromi, Mansoor Zolghadri
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2020, 28 (01) : 79 - 98
  • [28] A Framework for Volt-VAR Optimization in Distribution Systems
    Ahmadi, Hamed
    Marti, Jose R.
    Dommel, Hermann W.
    IEEE TRANSACTIONS ON SMART GRID, 2015, 6 (03) : 1473 - 1483
  • [29] Distributionally Robust Decentralized Volt-Var Control With Network Reconfiguration
    Byeon, Geunyeong
    Kim, Kibaek
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (05) : 4705 - 4718
  • [30] Decentralized Deterministic Multi-Agent Reinforcement Learning
    Grosnit, Antoine
    Cai, Desmond
    Wynter, Laura
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 1548 - 1553