Thermally-triggered grain boundary relaxation in a nanograined Ni-Mo-W alloy

被引:3
|
作者
Zeng, Dongsong [1 ,2 ]
Li, Jiongxian [1 ]
Shi, Yinong [1 ]
Li, Xiuyan [1 ]
Lu, Ke [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[2] Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
关键词
grain boundary relaxation; nanograined; ternary alloy; thermal stability; stacking fault energy; STACKING-FAULT ENERGY; ANNEALING TWINS; STABILITY; CREEP; METALS; SEGREGATION; TEMPERATURE; PLASTICITY; METALLURGY; MODEL;
D O I
10.1007/s12274-023-6186-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conventionally, nanograined metals and alloys can be stabilized through segregating foreign elements at grain boundaries (GBs). Yet such an effect may be offset by formation of second phase at elevated temperatures. In this paper, by introducing minor W into a binary Ni-Mo alloy, we found precipitation of intermetallic phases was suppressed, enhancing thermal stability of the nanograined structure. Characterized faceted GBs and a high-fraction of sigma 3 coincidence site lattice (CSL) boundaries illustrate that GB structures are relaxed by formation of copious annealing twins. Adding W reduces stacking fault energy of the solid solution and facilitates the thermally-triggered GB relaxation. Suppressed precipitation of the intermetallic phases may be attributed to depletion of solutes at relaxed GBs.
引用
收藏
页码:12800 / 12808
页数:9
相关论文
共 50 条
  • [31] The Synthesis of Bulk Ni-Mo-W Hydrodesulphurization Catalysts with High Activity by Using Methylcellulose
    Liu, D.
    Li, G.
    Liu, L.
    Liu, C.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2010, 28 (14) : 1485 - 1491
  • [32] W对Ni-Mo-W柴油超深度加氢脱硫性能的影响
    宋书征
    黄伟
    张乾
    李海涛
    闫飞飞
    石林
    太原理工大学学报, 2016, (05) : 587 - 592
  • [33] Effect of grain boundary relaxation on the corrosion behaviour of nanocrystalline Ni-P alloy
    Varshney, P.
    Chhangani, S.
    Prasad, M. J. N. V.
    Pati, S.
    Gollapudi, S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 830
  • [34] ATOM PROBE FIM STUDY OF SHORT-RANGE ORDER IN NI RICH NI-W AND NI-MO-W ALLOYS
    YAMAMOTO, M
    NENNO, S
    TADA, J
    FUKUCHI, T
    JOURNAL DE PHYSIQUE, 1987, 48 (C-6): : 367 - 372
  • [35] Granular Ni-Mo-W bulk hydrotreating catalyst: the effects from precursor calcination
    Nadeina, Ksenia A.
    Vatutina, Yuliya V.
    Mukhacheva, Polina P.
    Budukva, Sergey, V
    Danilova, Irina G.
    Pakharukova, Vera P.
    Gerasimov, Evgeniy Yu.
    Panafidin, Maxim A.
    Klimov, Oleg, V
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2024, 15 (06): : 837 - 854
  • [36] Synthesis and Hydrodesulfurization Performance of Bulk Ni-Mo-W Catalyst with High Surface Area
    Yu Haibin
    Zhang Jingcheng
    Nan Jun
    Geng Shan
    Zhang Yuting
    Shi Yulin
    Qu Xiaolong
    Liu Hongguang
    ADVANCES IN CHEMICAL, MATERIAL AND METALLURGICAL ENGINEERING, PTS 1-5, 2013, 634-638 : 604 - 607
  • [37] Preparation and Electrochemical Performance of Ni-Mo-W/NF Electrodes for Alkaline Water Electrolysis
    Du, Jinjing
    Zhou, Yu
    Zhang, Xuan
    Zhao, Dandan
    Cui, Xinxin
    Yangxuan, Yuxiang
    Li, Qian
    Feng, Xiao
    Zhu, Jun
    Zuo, Heng
    CATALYSIS LETTERS, 2024, 154 (10) : 5323 - 5336
  • [38] A promising perspective in improving corrosion and wear resistance of plain steel through electrodeposition of thick Ni-Mo-W ternary alloy
    Gholizadeh, T.
    Etminanfar, M. R.
    Ahmadi, N. Parvini
    Mahdavi, S.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 2322 - 2332
  • [39] Influence of sulfidation conditions on morphology and hydrotreating performance of unsupported Ni-Mo-W catalysts
    Yin, Changlong
    Wang, Yiyan
    Xue, Shushu
    Liu, Huan
    Li, He
    Liu, Chenguang
    FUEL, 2016, 175 : 13 - 19
  • [40] Thermodynamic description of the Ni-Mo-W system and interdiffusion study of its fcc phase
    Wang, Yang
    Wang, Jingjing
    Wang, Hao
    Lu, Xiao-Gang
    Zhang, Lijun
    CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2018, 61 : 165 - 172