Global regionalization of heat environment quality perception based on K-means clustering and Google trends data

被引:10
|
作者
Kim, Yesuel [1 ]
Kim, Youngchul [1 ]
机构
[1] Korea Adv Inst Sci & Technol, KAIST Smart City Res Ctr, Dept Civil & Environm Engn, KAIST Urban Design Lab, 291 Daehak Ro Yuseong Gu, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Climate change; Thermal environment; Perception; Regionalization; Google trends; CLIMATE-CHANGE; EXTREME HEAT; MORTALITY; TEMPERATURE; HEALTH; MODEL;
D O I
10.1016/j.scs.2023.104710
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To effectively plan for the thermal environment in the face of climate change, it is crucial to consider regionalized approaches and people's perceptions of the phenomenon based on actual experiences. This study performs perception-based regionalization research of the thermal environment using Google Trends search query volume data. Global Google Trends data for 12 terms related to the thermal environment were collected from 2016 to 2022 and analyzed by time series and geographical units. The study found that the correlation between geographical unit data was higher than that of the time series units. To propose a global regionalization map, we used K-means clustering on the geographical Google Trends dataset and determined the optimal number of five clusters using the elbow method. Through a detailed analysis of each term for derived clusters A to E, the study revealed findings and implications that would contribute to the literature on the thermal environment. Finally, the perception-based global regionalization map was proposed. Overall, this novel approach to determining global regions based on people's perceptions of the thermal environment with Google Trends data provides insights for effective future thermal environment planning by analyzing the priority of characteristic groups and indicators by relevant regions for each cluster.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] k-Means Clustering of Asymmetric Data
    Olszewski, Dominik
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I, 2012, 7208 : 243 - 254
  • [12] K-means clustering algorithm for data distribution in cloud computing environment
    Pan, Hailan
    Lei, Yongmei
    Yin, Shi
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2021, 12 (03) : 322 - 331
  • [13] The Global Kernel k-Means Clustering Algorithm
    Tzortzis, Grigorios
    Likas, Aristidis
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 1977 - 1984
  • [14] An Efficient Global K-means Clustering Algorithm
    Xie, Juanying
    Jiang, Shuai
    Xie, Weixin
    Gao, Xinbo
    JOURNAL OF COMPUTERS, 2011, 6 (02) : 271 - 279
  • [15] Soil data clustering by using K-means and fuzzy K-means algorithm
    Hot, Elma
    Popovic-Bugarin, Vesna
    2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 890 - 893
  • [16] A Quality Metric for K-Means Clustering Based on Centroid Locations
    Thulasidas, Manoj
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2022, PT II, 2022, 13726 : 208 - 222
  • [17] A hierarchical k-means clustering based fingerprint quality classification
    Munir, Muhammad Umer
    Javed, Muhammad Younus
    Khan, Shoab Ahmad
    NEUROCOMPUTING, 2012, 85 : 62 - 67
  • [18] IMPROVEMENT IN K-MEANS CLUSTERING ALGORITHM FOR DATA CLUSTERING
    Rajeswari, K.
    Acharya, Omkar
    Sharma, Mayur
    Kopnar, Mahesh
    Karandikar, Kiran
    1ST INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION ICCUBEA 2015, 2015, : 367 - 369
  • [19] The fast clustering algorithm for the big data based on K-means
    Xie, Ting
    Zhang, Taiping
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2020, 18 (06)
  • [20] A Novel K-Means based Clustering Algorithm for Big Data
    Sinha, Ankita
    Jana, Prasanta K.
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 1875 - 1879