Revisiting fractal through nonconventional iterated function systems

被引:9
|
作者
Prithvi, B. V. [1 ]
Katiyar, S. K. [1 ,2 ]
机构
[1] SRM Inst Sci & Technol, Dept Math, Chennai 603203, India
[2] Dr BR Ambedkar Natl Inst Technol, Dept Math, Jalandhar 144011, India
关键词
Ciric-Reich-Rus map; Kannan map; Rational map; Suzuki map; Iterated function system; Attractor; Fractal; Cyclic map; Set-valued map; Multivalued fractal; MULTIVALUED FRACTALS; RECONSTRUCTION;
D O I
10.1016/j.chaos.2023.113337
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is a pre-step in conducting a restudy for an emerging theory in applied sciences, namely Fractal interpolation. It is one of the best-fit models for capturing irregular data that arise in physical situations. On the other hand, it has fixed point theory as the staunch basis, so any inspection of it would get governed by the Hutchinson-Barnsley theory of fractals. In this regard, we classify an enormous collection of maps owned by the literature of fixed point theory into two - conventional and nonconventional. Suitably, every conventional iterated function system (IFS) has delivered fractal, but nonconventional IFSs are yet to make a mark. Therefore, the present work introduces a novel nonconventional map of the Ciric-Reich-Rus genre to fulfill this gap. It incorporates a parameter a ISIN; (0, INFIN;), in a Ciric-Reich-Rus condition, for the first time in the literature. Consequently, we obtain extension, improvement, and generalization of the results produced in Sahu et al. (2010), Shaoyuan et al. (2015), Dung and Petrusel (2017) and Abbas et al. (2022). In addition, a rational map and a Suzuki-type Kannan map are considered to prove the point.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Chaotic iterated function systems
    Sarizadeh, Aliasghar
    ARCHIV DER MATHEMATIK, 2022, 119 (05) : 531 - 538
  • [42] Attractors for iterated function systems
    D'Aniello, Emma
    Steele, T. H.
    JOURNAL OF FRACTAL GEOMETRY, 2016, 3 (02) : 95 - 117
  • [43] Chaotic iterated function systems
    Aliasghar Sarizadeh
    Archiv der Mathematik, 2022, 119 : 531 - 538
  • [44] Parabolic iterated function systems
    Mauldin, RD
    Urbanski, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 1423 - 1447
  • [45] Analyzing Convergence in Sequences of Uncountable Iterated Function Systems-Fractals and Associated Fractal Measures
    Mierlus-Mazilu, Ion
    Nita, Lucian
    MATHEMATICS, 2024, 12 (13)
  • [46] Chaos in Iterated Function Systems
    Mohtashamipour, Maliheh
    Bahabadi, Alireza Zamani
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (12):
  • [47] RECURRENT ITERATED FUNCTION SYSTEMS
    Mihail, Alexandru
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 53 (01): : 43 - 53
  • [48] Quantum iterated function systems
    Lozinski, A
    Zyczkowski, K
    Slomczynski, W
    PHYSICAL REVIEW E, 2003, 68 (04):
  • [49] Cyclic iterated function systems
    Pasupathi, R.
    Chand, A. K. B.
    Navascues, M. A.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (03)
  • [50] Sensitivity of iterated function systems
    Ghane, F. H.
    Rezaali, E.
    Sarizadeh, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (02) : 493 - 503