Modulation of *CHXO Adsorption to Facilitate Electrocatalytic Reduction of CO2 to CH4 over Cu-Based Catalysts

被引:112
|
作者
Zhao, Jing [1 ,2 ]
Zhang, Peng [1 ,2 ,3 ]
Yuan, Tenghui [1 ,2 ]
Cheng, Dongfang [1 ,2 ]
Zhen, Shiyu [1 ,2 ]
Gao, Hui [1 ,2 ]
Wang, Tuo [1 ,2 ,3 ,4 ]
Zhao, Zhi-Jian [1 ,2 ,3 ]
Gong, Jinlong [1 ,2 ,3 ,5 ]
机构
[1] Tianjin Univ, Minist Educ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Natl Ind Educ Platform Energy Storage, Tianjin 300350, Peoples R China
[4] Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus Tianjin Univ, Binhai New City 350207, Peoples R China
[5] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
CARBON-DIOXIDE; SURFACE; ELECTROREDUCTION; OXOPHILICITY; SPECTROSCOPY; IONS;
D O I
10.1021/jacs.2c12006
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Copper (Cu) can efficiently catalyze the electrochemical CO2 reduction reaction (CO2RR) to produce value-added fuels and chemicals, among which methane (CH4) has drawn attention due to its high mass energy density. However, the linear scaling relationship between the adsorption energies of *CO and *CHxO on Cu restricts the selectivity toward CH4. Alloying a secondary metal in Cu provides a new freedom to break the linear scaling relationship, thus regulating the product distribution. This paper describes a controllable electrodeposition approach to alloying Cu with oxophilic metal (M) to steer the reaction pathway toward CH4. The optimized La5Cu95 electrocatalyst exhibits a CH4 Faradaic efficiency of 64.5%, with the partial current density of 193.5 mA cm-2. The introduction of oxophilic La could lower the energy barrier for *CO hydrogenation to *CHxO by strengthening the M-O bond, which would also promote the breakage of the C-O bond in *CH3O for the formation of CH4. This work provides a new avenue for the design of Cu-based electrocatalysts to achieve high selectivity in CO2RR through the modulation of the adsorption behaviors of key intermediates.
引用
收藏
页码:6622 / 6627
页数:6
相关论文
共 50 条
  • [41] Catalysts for CO2 reforming of CH4: a review
    Li, Meijia
    Sun, Zhuxing
    Hu, Yun Hang
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (21) : 12495 - 12520
  • [42] Size dependent selectivity of Cu nano-octahedra catalysts for the electrochemical reduction of CO2 to CH4
    Lyengar, Pranit
    Huang, Jianfeng
    De Gregorio, Gian Luca
    Gadiyar, Chethana
    Buonsanti, Raffaella
    CHEMICAL COMMUNICATIONS, 2019, 55 (60) : 8796 - 8799
  • [43] Catalytic reduction of NO, with H2/CO/CH4 over PdMOR catalysts
    Pieterse, Johannis A. Z.
    Booneveld, Saskia
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2007, 73 (3-4) : 327 - 335
  • [44] Exploring Electrocatalytic CO2 Reduction Over Materials Derived from Cu-Based Metal-Organic Frameworks
    Li, Yining
    Chowdhury, Abhishek Dutta
    CHEMCATCHEM, 2024,
  • [45] Recent Advances on CO2 Electrochemical Reduction over Cu-Based Nanocrystals
    Xue, Fei
    Lai, Xiaofei
    Xu, Yong
    CHEMCATCHEM, 2024,
  • [46] Cu-based materials as co-catalysts for photocatalytic CO2 reduction: A mini review
    Jing, Ya-Nan
    Yin, Xing-Liang
    Li, Lei -Lei
    MATERIALS TODAY SUSTAINABILITY, 2024, 26
  • [47] Efficient strategies for promoting the electrochemical reduction of CO2 to C2+products over Cu-based catalysts
    Yang, Huanhuan
    Li, Shiying
    Xu, Qun
    CHINESE JOURNAL OF CATALYSIS, 2023, 48 : 32 - 65
  • [48] Cu-based heterojunction catalysts for electrocatalytic nitrate reduction to ammonia
    Huang, Yitao
    Guan, Minghao
    Pei, Jiyuan
    Song, Yongyi
    Wu, Tao
    Hou, Shuandi
    Lu, Anhui
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2024, 52 (12): : 1857 - 1864
  • [49] The roles of CO and CO2 in high pressure methanol synthesis over Cu-based catalysts
    Nielsen, Niels D.
    Jensen, Anker D.
    Christensen, Jakob M.
    JOURNAL OF CATALYSIS, 2021, 393 : 324 - 334
  • [50] Coupling of electrocatalytic CO2 reduction and CH4 oxidation for efficient methyl formate electrosynthesis
    Zhang, Quan
    Chen, Yangshen
    Yan, Shuai
    Lv, Ximeng
    Yang, Chao
    Kuang, Min
    Zheng, Gengfeng
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (06) : 2309 - 2314