Concurrence triangle induced genuine multipartite entanglement measure

被引:13
|
作者
Jin, Zhi-Xiang [1 ,2 ,3 ]
Tao, Yuan-Hong [4 ]
Gui, Yao-Ting [3 ]
Fei, Shao-Ming [3 ,5 ]
Li-Jost, Xianqing [3 ]
Qiao, Cong-Feng [2 ,6 ]
机构
[1] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan 523808, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys, Yuquan Rd 19A, Beijing 100049, Peoples R China
[3] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[4] Zhejiang Univ Sci & Technol, Sch Sci, 318 Liuhe Rd, Hangzhou 310023, Zhejiang, Peoples R China
[5] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[6] CAS Ctr Excellence Particle Phys, Beijing 100049, Peoples R China
基金
北京市自然科学基金;
关键词
Genuine multipartite entanglement measure; Polygamy inequality; Concurrence triangle; Entanglement distribution;
D O I
10.1016/j.rinp.2022.106155
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the quantification of genuine multipartite entanglement (GME) for general multipartite states. A set of inequalities satisfied by the entanglement of N-partite pure states is derived by exploiting the restrictions on entanglement distributions, showing that the bipartite entanglement between each part and its remaining ones cannot exceed the sum of the other partners with their remaining ones. Then a series of triangles, named concurrence triangles, are established corresponding to these inequalities. Proper genuine multipartite entanglement measures are thus constructed by using the geometric mean area of these concurrence triangles, which are non-increasing under local operation and classical communication. The GME measures classify which parts are separable or entangled with the rest ones for non genuine entangled pure states. The GME measures for mixed states are given via the convex roof construction, and a witness to detect the GME of multipartite mixed states is presented by an approach based on state purifications. Detailed examples are given to illustrate the effectiveness of our GME measures.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Measure and detection of genuine multipartite entanglement for n-partite systems
    Wen Xu
    Zhu-Jun Zheng
    Chuan-Jie Zhu
    Shao-Ming Fei
    [J]. The European Physical Journal Plus, 136
  • [22] Better Entanglement Witness for Genuine Multipartite Entanglement
    Koji Nagata
    Tadao Nakamura
    Josep Batle
    Soliman Abdalla
    Ahmed Farouk
    [J]. International Journal of Theoretical Physics, 2018, 57 : 2116 - 2120
  • [23] Better Entanglement Witness for Genuine Multipartite Entanglement
    Nagata, Koji
    Nakamura, Tadao
    Batle, Josep
    Abdalla, Soliman
    Farouk, Ahmed
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (07) : 2116 - 2120
  • [24] Detection of genuine multipartite entanglement in arbitrary multipartite systems
    Lu, Yu
    Fei, Shao-Ming
    [J]. RESULTS IN PHYSICS, 2023, 52
  • [25] Complete genuine multipartite entanglement monotone
    Guo, Yu
    [J]. RESULTS IN PHYSICS, 2024, 57
  • [26] Examining the dimensionality of genuine multipartite entanglement
    Spengler, Christoph
    Huber, Marcus
    Gabriel, Andreas
    Hiesmayr, Beatrix C.
    [J]. QUANTUM INFORMATION PROCESSING, 2013, 12 (01) : 269 - 278
  • [27] Genuine multipartite entanglement in the XY model
    Giampaolo, S. M.
    Hiesmayr, B. C.
    [J]. PHYSICAL REVIEW A, 2013, 88 (05):
  • [28] Genuine multipartite entanglement in quantum optimization
    Pitaevskii BEC Center, Department of Physics, University of Trento, Via Sommarive 14, Trento
    I-38123, Italy
    不详
    I-38123, Italy
    不详
    69120, Germany
    不详
    IN-826004, India
    不详
    CH-8803, Switzerland
    [J]. Phys. Rev. A, 2025, 111 (02):
  • [29] Examining the dimensionality of genuine multipartite entanglement
    Christoph Spengler
    Marcus Huber
    Andreas Gabriel
    Beatrix C. Hiesmayr
    [J]. Quantum Information Processing, 2013, 12 : 269 - 278
  • [30] Multipartite entanglement measure
    Yu, CS
    Song, HS
    [J]. PHYSICAL REVIEW A, 2005, 71 (04):