Advance brain tumor segmentation using feature fusion methods with deep U-Net model with CNN for MRI data

被引:17
|
作者
Nizamani, Abdul Haseeb [1 ]
Chen, Zhigang [1 ]
Nizamani, Ahsan Ahmed [1 ]
Bhatti, Uzair Aslam [2 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[2] Hainan Univ, Sch Informat & Commun Engn, Haikou 570100, Peoples R China
关键词
Medical Image Segmentation; UNet; CLAHE; Feature enhancement; MRI; EQUALIZATION;
D O I
10.1016/j.jksuci.2023.101793
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In modern healthcare, the precision of medical image segmentation holds immense significance for diag-nosis and treatment planning. Deep learning techniques, such as CNNs, UNETs, and Transformers, have revolutionized this field by automating the previously labor-intensive manual segmentation processes. However, challenges like intricate structures and indistinct features persist, leading to accuracy issues. Researchers are diligently addressing these challenges to further unlock the potential of medical image segmentation in healthcare transformation. To enhance the precision of brain tumor MRI image segmen-tation, our study introduces three novel feature-enhanced hybrid UNet models (FE-HU-NET): FE1-HU-NET, FE2-HU-NET, and FE3-HU-NET. Our approach encompasses three main aspects. Initially, we empha-size feature enhancement during the image preprocessing stage. We apply distinct image enhancement techniques-CLAHE, MHE, and MBOBHE-to each model. Secondly, we tailor the architecture of the UNet model to enhance segmentation results, focusing on a personalized layered design. Lastly, we employ a CNN model in post-processing to refine segmentation outcomes through additional convolutional layers. The HU-Net module, shared across the three models, integrates a customized UNet layer and a CNN. We also introduce an alternative feature-enhanced variant, FE4-HU-NET, utilizing the DeepLABv3 model. Incorporating CLAHE for image enhancement and bolstered by CNN layers, this variant offers a distinct approach. Rigorous experimentation underscores the excellence of our proposed framework in distin-guishing complex brain tissues, surpassing current state-of-the-art models. Impressively, we achieve accuracy rates exceeding 99% across two publicly available datasets. Performance metrics such as the Jaccard index, sensitivity, and specificity further substantiate the effectiveness of our Hybrid U-Net model.(c) 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:14
相关论文
共 50 条
  • [21] MAU-Net: Mixed attention U-Net for MRI brain tumor segmentation
    Zhang, Yuqing
    Han, Yutong
    Zhang, Jianxin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (12) : 20510 - 20527
  • [22] Brain tumor segmentation using U-Net in conjunction with EfficientNet
    Lin, Shu-You
    Lin, Chun-Ling
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [23] Brain tumor segmentation and classification using optimized U-Net
    Shiny, K., V
    IMAGING SCIENCE JOURNAL, 2024, 72 (02): : 204 - 219
  • [24] BRAIN TUMOR SEGMENTATION AND CLASSIFICATION USING OPTIMIZED U-NET
    Shiny, K. V.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (01)
  • [25] Tuning U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 162 - 173
  • [26] Optimized U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Milesi, Alexandre
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 15 - 29
  • [27] Hippocampus Segmentation in MRI Using Side U-Net Model
    Yao, Wenbin
    Wang, Shan
    Fu, Huiyuan
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT III, 2019, 11955 : 143 - 150
  • [28] BRAIN CANCER SEGMENTATION IN MRI USING FULLY CONVOLUTIONAL NETWORK WITH THE U-NET MODEL
    Helen, R.
    Priya, Mary Adline M.
    Adhithyan, N.
    Praveena, R.
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [29] Brain Tumor Identification using Dilated U-Net based CNN
    Saida, D.
    Premchand, P.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2022, 17 (06)
  • [30] Brain Tumor Segmentation from 3D MRI Scans Using U-Net
    Montaha S.
    Azam S.
    Rakibul Haque Rafid A.K.M.
    Hasan M.Z.
    Karim A.
    SN Computer Science, 4 (4)