Deep reinforcement transfer learning of active control for bluff body flows at high Reynolds number

被引:17
|
作者
Wang, Zhicheng [1 ,2 ]
Fan, Dixia [3 ]
Jiang, Xiaomo [2 ,4 ]
Triantafyllou, Michael S. [5 ,6 ]
Karniadakis, George Em [7 ,8 ]
机构
[1] Dalian Univ Technol, Lab Ocean Energy Utilizat, Minist Educ, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Energy & Power Engn, Dalian 116024, Peoples R China
[3] Westlake Univ, Sch Engn, Hangzhou 310024, Peoples R China
[4] Dalian Univ Technol, State Key Lab Struct Anal Optimizat & CAE Software, Prov Key Lab Digital Twin Ind Equipment, Dalian 116024, Peoples R China
[5] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[6] MIT Sea Grant Coll Program, Cambridge, MA 02139 USA
[7] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[8] Brown Univ, Sch Engn, Providence, RI 02912 USA
关键词
drag reduction; turbulence simulation; machine learning; LARGE-EDDY SIMULATION; TURBULENT; CYLINDER; WAKE;
D O I
10.1017/jfm.2023.637
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We demonstrate how to accelerate the computationally taxing process of deep reinforcement learning (DRL) in numerical simulations for active control of bluff body flows at high Reynolds number (Re) using transfer learning. We consider the canonical flow past a circular cylinder whose wake is controlled by two small rotating cylinders. We first pre-train the DRL agent using data from inexpensive simulations at low Re, and subsequently we train the agent with small data from the simulation at high Re (up to Re = 1.4 x 10(5)). We apply transfer learning (TL) to three different tasks, the results of which show that TL can greatly reduce the training episodes, while the control method selected by TL is more stable compared with training DRL from scratch. We analyse for the first time the wake flow at Re = 1.4 x 10(5) in detail and discover that the hydrodynamic forces on the two rotating control cylinders are not symmetric.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] GENERATING HIGH REYNOLDS-NUMBER FLOWS
    RUSSELL, DA
    INSTRUMENTS & CONTROL SYSTEMS, 1972, 45 (08): : 57 - &
  • [32] LES in complex high Reynolds number flows
    Tafti, D.
    Patil, S.
    THMT-12. PROCEEDINGS OF THE SEVENTH INTERNATIONAL SYMPOSIUM ON TURBULENCE, HEAT AND MASS TRANSFER, 2012, : 13 - 24
  • [33] UNSTEADY HIGH-REYNOLDS-NUMBER FLOWS
    RILEY, N
    VASANTHA, R
    JOURNAL OF FLUID MECHANICS, 1989, 205 : 243 - 262
  • [34] High resolution vortex simulation of bluff body flows
    Leonard, A.
    Koumoutsakos, P.
    Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46-47 : 315 - 325
  • [35] Active control of a high reynolds number Mach 0.9 axisymmetric Jet
    Kim, J.-H.
    Kastner, J.
    Samimy, M.
    AIAA Journal, 2009, 47 (01): : 116 - 128
  • [36] Numerical convergence of vortex method for a high Reynolds number 2D bluff-body flow
    Mortazavi, I
    Micheau, P
    Giovannini, A
    COMPTES RENDUS MECANIQUE, 2002, 330 (06): : 409 - 416
  • [37] Active Control of a High Reynolds Number Mach 0.9 Axisymmetric Jet
    Kim, J. -H.
    Kastner, J.
    Samimy, M.
    AIAA JOURNAL, 2009, 47 (01) : 116 - 128
  • [38] Optimizing low-Reynolds-number predation via optimal control and reinforcement learning
    Zhu, Guangpu
    Fang, Wen-Zhen
    Zhu, Lailai
    JOURNAL OF FLUID MECHANICS, 2022, 944
  • [39] Transfer Learning in Deep Reinforcement Learning
    Islam, Tariqul
    Abid, Dm. Mehedi Hasan
    Rahman, Tanvir
    Zaman, Zahura
    Mia, Kausar
    Hossain, Ramim
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2022, VOL 1, 2023, 447 : 145 - 153
  • [40] Time-mean description of turbulent bluff-body separation in the high-Reynolds-number limit
    Scheichl, B.
    Kluwick, A.
    Smith, F. T.
    ADVANCES IN TURBULENCE XII - PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE, 2009, 132 : 577 - 580