Spatio-Temporal Relevance Classification from Geographic Texts Using Deep Learning

被引:1
|
作者
Tian, Miao [1 ]
Hu, Xinxin [2 ]
Huang, Jiakai [3 ]
Ma, Kai [2 ]
Li, Haiyan [2 ]
Zheng, Shuai [2 ]
Tao, Liufeng [4 ,5 ]
Qiu, Qinjun [4 ,5 ]
机构
[1] China Univ Geosci, Key Lab Geol Survey & Evaluat, Minist Educ, Wuhan 430074, Peoples R China
[2] China Three Gorges Univ, Coll Comp & Informat Technol, Yichang 443002, Peoples R China
[3] Hubei Geol Survey, Wuhan 430034, Peoples R China
[4] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[5] Minist Nat Resources, Key Lab Quantitat Resources Assessment & Informat, Wuhan 430074, Peoples R China
关键词
spatio-temporal text classification; geographical knowledge; spatio-temporal relevance; deep learning; geographical text; FRAMEWORK;
D O I
10.3390/ijgi12090359
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The growing proliferation of geographic information presents a substantial challenge to the traditional framework of a geographic information analysis and service. The dynamic integration and representation of geographic knowledge, such as triples, with spatio-temporal information play a crucial role in constructing a comprehensive spatio-temporal knowledge graph and facilitating the effective utilization of spatio-temporal big data for knowledge-driven service applications. The existing knowledge graph (or geographic knowledge graph) takes spatio-temporal as the attribute of entity, ignoring the role of spatio-temporal information for accurate retrieval of entity objects and adaptive expression of entity objects. This study approaches the correlation between geographic knowledge and spatio-temporal information as a text classification problem, with the aim of addressing the challenge of establishing meaningful connections among spatio-temporal data using advanced deep learning techniques. Specifically, we leverage Wikipedia as a valuable data source for collecting and filtering geographic texts. The Open Information Extraction (OpenIE) tool is employed to extract triples from each sentence, followed by manual annotation of the sentences' spatio-temporal relevance. This process leads to the formation of quadruples (time relevance/space relevance) or quintuples (spatio-temporal relevance). Subsequently, a comprehensive spatio-temporal classification dataset is constructed for experiment verification. Ten prominent deep learning text classification models are then utilized to conduct experiments covering various aspects of time, space, and spatio-temporal relationships. The experimental results demonstrate that the Bidirectional Encoder Representations from Transformer-Region-based Convolutional Neural Network (BERT-RCNN) model exhibits the highest performance among the evaluated models. Overall, this study establishes a foundation for future knowledge extraction endeavors.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Spatio-temporal deep learning method for ADHD fMRI classification
    Mao, Zhenyu
    Su, Yi
    Xu, Guangquan
    Wang, Xueping
    Huang, Yu
    Yue, Weihua
    Sun, Li
    Xiong, Naixue
    INFORMATION SCIENCES, 2019, 499 : 1 - 11
  • [2] A Spatio-temporal Deep Learning Approach for Underwater Acoustic Signals Classification
    Alouani, Zakaria
    Hmamouche, Youssef
    El Khamlichi, Btissam
    Seghrouchni, Amal El Fallah
    2022 18TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2022), 2022,
  • [3] Air quality prediction using spatio-temporal deep learning
    Hu, Keyong
    Guo, Xiaolan
    Gong, Xueyao
    Wang, Xupeng
    Liang, Junqing
    Li, Daoquan
    ATMOSPHERIC POLLUTION RESEARCH, 2022, 13 (10)
  • [4] Spatio-Temporal Data Clustering using Deep Learning: A Review
    Aparna, R.
    Idicula, Sumam Mary
    2022 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (IEEE EAIS 2022), 2022,
  • [5] Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta Learning
    Pan, Zheyi
    Liang, Yuxuan
    Wang, Weifeng
    Yu, Yong
    Zheng, Yu
    Zhang, Junbo
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1720 - 1730
  • [6] Kinship Verification from Videos using Spatio-Temporal Texture Features and Deep Learning
    Boutellaa, Elhocine
    Lopez, Miguel Bordallo
    Ait-Aoudia, Samy
    Feng, Xiaoyi
    Hadid, Abdenour
    2016 INTERNATIONAL CONFERENCE ON BIOMETRICS (ICB), 2016,
  • [7] Spatio-temporal Mapping of Cotton Blooms Appearance Using Deep Learning
    Thesma, Vaishnavi
    Mwitta, Canicius
    Rains, Glen
    Velni, Javad Mohammadpour
    IFAC PAPERSONLINE, 2022, 55 (32): : 36 - 41
  • [8] Classification of spatio-temporal trajectories from Volunteer Geographic Information through fuzzy rules
    Cuenca-Jara, Jesus
    Terroso-Saenz, Fernando
    Valdes-Vela, Mercedes
    Skarmeta, Antonio F.
    APPLIED SOFT COMPUTING, 2020, 86 (86)
  • [9] Spatio-temporal data classification using CVNNs
    Zahradnik, Jakub
    Skrbek, Miroslav
    SIMULATION MODELLING PRACTICE AND THEORY, 2013, 33 : 81 - 88
  • [10] Deep Spatio-Temporal Representation Learning for Multi-Class Imbalanced Data Classification
    Pouyanfar, Samira
    Chen, Shu-Ching
    Shyu, Mei-Ling
    2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), 2018, : 386 - 393