An overview of polymeric composite scaffolds with piezoelectric properties for improved bone regeneration

被引:8
|
作者
Donate, Ricardo [1 ]
Paz, Ruben [1 ]
Moriche, Rocio [2 ]
Sayagues, Maria Jesus [3 ]
Aleman-Dominguez, Maria Elena [1 ]
Monzon, Mario [1 ]
机构
[1] Univ Las Palmas Gran Canaria, Dept Ingn Mecan, Grp Invest Fabricac Integrada & Avanzada, Campus Univ Tafira S-N, Las Palmas Gran Canaria 35017, Spain
[2] Univ Seville, Dept Fis Mat Condensada, Apartado 1065, E-41080 Seville, Spain
[3] Inst Ciencia Mat Sevilla CSIC US, Seville 41092, Spain
关键词
Biomaterials; Bone Tissue Engineering; Piezoelectricity; Additive Manufacturing; Perovskite structure; INTENSITY PULSED ULTRASOUND; OSTEOGENIC DIFFERENTIATION; CERAMICS; STIMULATION; PROLIFERATION; CELLS; MECHANOSYNTHESIS; COEFFICIENTS; NANOFIBERS; PRESSURE;
D O I
10.1016/j.matdes.2023.112085
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Despite the dramatic change that Tissue Engineering or stem cell therapies have brought to current therapeutic strategies, there is a lack of functionalities in the available biomaterials for manufacturing scaffolds to treat several highly prevalent osseous diseases (osteochondral defects, osteoporosis, etc.). One promising approach to fill this gap involves the development of innovative piezoelectric scaffolds for improved bone regeneration. Scaffolds with the appropriate piezoelectricity can positively influence the proliferation and differentiation of mesenchymal stem cells to regenerate bone tissue, since surface electrical charges play a key role in the mechanotransduction process. In this work, polymeric-based composite scaffolds with piezoelectric properties intended for bone tissue engineering are reviewed. Special attention is paid to biocompatible, piezoelectric polymers that show suitable properties to be pro-cessed by additive manufacturing techniques. Previous works on composite scaffolds based of these poly-meric matrices and containing piezoceramic additives are summarized. The use of piezoelectric nanostructured composite formulations containing lead-free ceramic oxide nanoparticles with per-ovskite structure is highlighted. Also, different commonly applied mechanical stimuli to activate the piezoelectric effect of the developed materials are presented. Finally, other applications of such scaffolds are mentioned, including their capabilities for real-time monitoring.& COPY; 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Preparation and Characterization of Chitosan/Hydroxyapatite Nanowire Composite Scaffolds for Bone Regeneration
    Zhou, Kui
    Hu, Rugang
    Li, Hanjing
    Chen, Hongwei
    FIBERS AND POLYMERS, 2024, 25 (05) : 1665 - 1673
  • [32] Advances in the Application of Photothermal Composite Scaffolds for Osteosarcoma Ablation and Bone Regeneration
    Chen, Xiaohong
    Yang, Liqun
    Wu, Yanfang
    Wang, Lina
    Li, Huafeng
    ACS OMEGA, 2023, 8 (49): : 46362 - 46375
  • [33] Large defect-tailored composite scaffolds for in vivo bone regeneration
    Ronca, Alfredo
    Guarino, Vincenzo
    Raucci, Maria Grazia
    Salamanna, Francesca
    Martini, Lucia
    Zeppetelli, Stefania
    Fini, Milena
    Kon, Elisaveta
    Filardo, G.
    Marcacci, Maurilio
    Ambrosio, Luigi
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2014, 29 (05) : 715 - 727
  • [34] Morphology and human bone cell interaction of fibre reinforced composite scaffolds for bone regeneration
    Guarino, V.
    Causa, F.
    Ciapetti, G.
    Martini, D.
    Baldini, N.
    Ambrosio, L.
    TISSUE ENGINEERING PART A, 2008, 14 (05) : 882 - 882
  • [35] Multifunctional Scaffolds with Improved Antimicrobial Properties and Osteogenicity Based on Piezoelectric Electrospun Fibers Decorated with Bioactive Composite Microcapsules
    Timin, Alexander S.
    Muslimoy, Albert R.
    Zyuzin, Mikhail, V
    Peltek, Oleksii O.
    Karpoy, Timofey E.
    Sergeev, Igor S.
    Dotsenko, Anna, I
    Goncharenko, Alexander A.
    Yolshin, Nikita D.
    Sinelnik, Artem
    Krause, Baerbel
    Baumbach, Tilo
    Surmeneya, Maria A.
    Chernozem, Roman, V
    Sukhorukoy, Gleb B.
    Surmeney, Roman A.
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (41) : 34849 - 34868
  • [36] Scaffolds and tissue regeneration: An overview of the functional properties of selected organic tissues
    Rebelo, Marcia A.
    Alves, Thais F. R.
    de Lima, Renata
    Oliveira, Jose M., Jr.
    Vila, Marta M. D. C.
    Balcao, Victor M.
    Severino, Patricia
    Chaud, Marco V.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2016, 104 (07) : 1483 - 1494
  • [37] Fibrinogen scaffolds with immunomodulatory properties promote in vivo bone regeneration
    Vasconcelos, Daniel M.
    Goncalves, Raquel M.
    Almeida, Catarina R.
    Pereira, Ines O.
    Oliveira, Marta I.
    Neves, Nuno
    Silva, Andreia M.
    Ribeiro, Antonio C.
    Cunha, Carla
    Almeida, Ana R.
    Ribeiro, Cristina C.
    Gil, Ana M.
    Seebach, Elisabeth
    Kynast, Katharina L.
    Richter, Wiltrud
    Lamghari, Meriem
    Santos, Susana G.
    Barbosa, Mario A.
    BIOMATERIALS, 2016, 111 : 163 - 178
  • [38] 3D-Printed Piezoelectric Scaffolds with Shape Memory Polymer for Bone Regeneration
    Li, Guanlin
    Li, Zehao
    Min, Yajun
    Chen, Shilu
    Han, Ruijia
    Zhao, Zheng
    SMALL, 2023, 19 (40)
  • [40] Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects
    Cheng, Tao
    Qu, Haiyun
    Zhang, Guoyou
    Zhang, Xianlong
    ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2018, 46 (08) : 1935 - 1947