Functional analysis of a late embryogenesis abundant protein ZmNHL1 in maize under drought stress

被引:10
|
作者
Wang, Guorui [1 ]
Su, Huihui [1 ]
Abou-Elwafa, Salah Fatouh [2 ]
Zhang, Pengyu [3 ]
Cao, Liru [3 ]
Fu, Jiaxu [1 ]
Xie, Xiaowen [1 ]
Ku, Lixia [1 ]
Wen, Pengfei [1 ]
Wang, Tongchao [1 ]
Wei, Li [1 ]
机构
[1] Henan Agr Univ, Coll Agron, Zhengzhou 450002, Peoples R China
[2] Assiut Univ, Fac Agr, Agron Dept, Assiut, Egypt
[3] Henan Acad Agr Sci, Zhengzhou 450002, Peoples R China
关键词
Zea mays; ZmNHL1; LEA protein; Abiotic tolerance; Functional analysis; WATER-DEFICIT; LEA PROTEINS; SALT STRESS; HEAT-STRESS; TOLERANCE; GENE; EXPRESSION; RICE; HVA1;
D O I
10.1016/j.jplph.2022.153883
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Maize is an important feed and industrial cereal crop and is crucial for global food security. The development of drought-tolerant genotypes is a major aim of breeding programs to fight water scarcity and maintain sustainable maize production. Late embryogenesis abundant (LEA) proteins are a family of proteins related to osmotic regulation that widely exist in organisms. Here, we implemented a previously generated maize transcriptomic dataset to identify a drought-responsive gene designated ZmNHL1. Bioinformatics analysis of ZmNHL1 showed that the protein encoded by ZmNHL1 belongs to the LEA-2 protein family. Tissue specific expression analysis showed that ZmNHL1 is relatively abundant in stems and leaves, highly expressed in tassels and only slightly expressed in roots, pollens and ears. Moreover, the activity of SOD and POD of plants from three 35S::ZmNHL1 transgenic lines under either the induced drought stress conditions (by 20% PEG6000) or the natural water deficit treatment (by water withholding) were higher than that of the WT plants, while the electrolyte leakage of the 35S::ZmNHL1 transgenic plants was lower than that of the WT plants under both drought treatments. Our data further revealed that ZmNHL1 promotes maize tolerance to drought stress in 35S::ZmNHL1 transgenic plants by improving ROS scavenging and maintaining the cell membrane permeability. Overall, our data revealed that ZmNHL1 promotes maize tolerance to drought stress and contributes to provide elite germplasm resources for maize drought tolerance breeding programs.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Levels of MeLEA3, a cDNA Sequence Coding for an Atypical Late Embryogenesis Abundant Protein in Cassava, Increase Under In Vitro Salt Stress Treatment
    Monteiro Costa, Carinne de Nazare
    Santa Brigida, Ailton Borges
    Borges, Barbara do Nascimento
    de Menezes Neto, Marco Antonio
    Castelo Branco Carvalho, Luiz Joaquim
    Batista de Souza, Claudia Regina
    PLANT MOLECULAR BIOLOGY REPORTER, 2011, 29 (04) : 997 - 1005
  • [42] The Role of the Late Embryogenesis-Abundant (LEA) Protein Family in Development and the Abiotic Stress Response: A Comprehensive Expression Analysis of Potato (Solanum Tuberosum)
    Chen, Yongkun
    Li, Canhui
    Zhang, Bo
    Yi, Jing
    Yang, Yu
    Kong, Chunyan
    Lei, Chunxia
    Gong, Ming
    GENES, 2019, 10 (02)
  • [43] Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli
    Jie Gao
    Ting Lan
    Scientific Reports, 6
  • [44] Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli
    Gao, Jie
    Lan, Ting
    SCIENTIFIC REPORTS, 2016, 6
  • [45] Transcriptome analysis of drought-responsive and drought-tolerant mechanisms in maize leaves under drought stress
    Jiang, Yuan
    Su, Shengzhong
    Chen, Hao
    Li, Shipeng
    Shan, Xiaohui
    Li, He
    Liu, Hongkui
    Dong, Haixiao
    Yuan, Yaping
    PHYSIOLOGIA PLANTARUM, 2023, 175 (02)
  • [46] Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance
    Mowla, Shaheen B.
    Cuypers, Ann
    Driscoll, Simon P.
    Kiddle, Guy
    Thomson, Jennifer
    Foyer, Christine H.
    Theodoulou, Frederica L.
    PLANT JOURNAL, 2006, 48 (05): : 743 - 756
  • [47] Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein
    Singh, S
    Cornilescu, CC
    Tyler, RC
    Cornilescu, G
    Tonelli, M
    Lee, MS
    Markley, JL
    PROTEIN SCIENCE, 2005, 14 (10) : 2601 - 2609
  • [48] SmLEA2, a gene for late embryogenesis abundant protein isolated from Salvia miltiorrhiza, confers tolerance to drought and salt stress in Escherichia coli and S. miltiorrhiza
    Huaiqin Wang
    Yucui Wu
    Xinbing Yang
    Xiaorong Guo
    Xiaoyan Cao
    Protoplasma, 2017, 254 : 685 - 696
  • [49] SmLEA2, a gene for late embryogenesis abundant protein isolated from Salvia miltiorrhiza, confers tolerance to drought and salt stress in Escherichia coli and S-miltiorrhiza
    Wang, Huaiqin
    Wu, Yucui
    Yang, Xinbing
    Guo, Xiaorong
    Cao, Xiaoyan
    PROTOPLASMA, 2017, 254 (02) : 685 - 696
  • [50] Heterologous Expression of Camellia sinensis Late Embryogenesis Abundant Protein Gene 1(CsLEA1) Confers Cold Stress Tolerance in Escherichia coli and Yeast
    Tong Gao
    Yunxin Mo
    Huiyu Huang
    Jinming Yu
    Yi Wang
    Weidong Wang
    园艺学报(英文), 2021, 7 (01) : 89 - 96