Deformation behavior and strengthening mechanism of CuTa/CuTa amorphous/amorphous nanomultilayers

被引:9
|
作者
Doan, Dinh-Quan [1 ]
Fang, Te-Hua [2 ]
Tran, Thi-Bao-Tien [2 ,3 ]
机构
[1] Hung Yen Univ Technol & Educ, Fac Mech Engn, Khoai Chau, Hung Yen, Vietnam
[2] Natl Kaohsiung Univ Sci & Technol, Dept Mech Engn, Kaohsiung 807, Taiwan
[3] Nha Trang Univ, Fac Mech Engn, Khanh Hoa, Vietnam
关键词
Nanomultilayer; Amorphous; Tension; MD simulation; Layer thickness; MOLECULAR-DYNAMICS SIMULATION; NON-LOCALIZED DEFORMATION; SHEAR-BAND FORMATION; BULK METALLIC-GLASS; HIGH-ENTROPY ALLOY; PLASTIC-DEFORMATION; IN-SITU; TEMPERATURE; INTERFACE; NANOLAMINATE;
D O I
10.1016/j.jnoncrysol.2022.121993
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The tensile deformation behaviors of Cu80Ta20/Cu20Ta80 amorphous/amorphous nanomultilayers (AANMs) are investigated using molecular dynamics simulation. The tensile strength of the AANMs shows that the AANMs with reduced layer thickness from 160.0 angstrom to 26.7 angstrom demonstrate the Hall-Petch relationship because of the obstruction of interface to the shear band movement, while the specimens with more reduced layer thickness from 26.7 angstrom to 10.0 angstrom manifest the inverse Hall-Petch effect due to the direct interaction of the shear trans-formation zones. Additionally, the tensile strength of AANMs increases with increasing the strain rate and decreasing the temperature. The deformation mechanism reveals that multiple shear bands cross the amorphous/ amorphous interfaces and interact with each other, which leads to enhanced ductility of the specimen with a small layer thickness. However, the shear bands locally focus on soft amorphous layers for AANMs with great layer thicknesses, causing shear softening and sample damage.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Structural mechanism of plastic deformation of nanomaterials with amorphous intergranular layers
    Glezer, A
    Pozdnyakov, V
    NANOSTRUCTURED MATERIALS, 1995, 6 (5-8): : 767 - 769
  • [32] Deformation behavior of bulk amorphous Zr-base alloys
    Leonhard, A
    Heilmaier, M
    Eckert, J
    Schultz, L
    BULK METALLIC GLASSES, 1999, 554 : 137 - 142
  • [33] Shape memory behavior of amorphous polymeric nanocomposites at small deformation
    Alamdarnejad, Ghazaleh
    Kokabi, Mehrdad
    Akbari, Reza
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2022, 29 (20) : 2913 - 2926
  • [34] Characterization of micro-to macroscopic deformation Behavior of amorphous polymer
    Tomita, Y
    Uchida, M
    ENGINEERING PLASTICITY FROM MACROSCALE TO NANOSCALE PTS 1 AND 2, 2003, 233-2 : 673 - 678
  • [35] Strengthening mechanism and plasticity deformation of crystalline/amorphous Cu3Fe/Fe3Cu nanolayered composite
    Yang, Chao
    Liang, Yong-chao
    Zhou, Li-li
    Tian, Zean
    Chen, Qian
    Mo, Yunfei
    PHYSICA B-CONDENSED MATTER, 2023, 668
  • [36] EFFECTS OF QUASI-CONFORMAL STRENGTHENING AND MECHANISMS OF AMORPHOUS ALLOY PLASTIC-DEFORMATION
    GLEZER, AM
    MOLOTILOV, BV
    UTEVSKAIA, OL
    DOKLADY AKADEMII NAUK SSSR, 1982, 263 (01): : 84 - 89
  • [37] Strengthening mechanism of Zr-based devitrified amorphous nanocomposites with quasicrystalline phases
    Kim, HS
    Kato, H
    Inoue, A
    METASTABLE, MECHANICALLY ALLOYED AND NANOCRYSTALLINE MATERIALS, 2003, : 205 - 208
  • [38] Limiting of photo induced changes in amorphous chalcogenide/alumino-silicate nanomultilayers
    Charnovych, S.
    Nemec, P.
    Nazabal, V.
    Csik, A.
    Allix, M.
    Matzen, G.
    Kokenyesi, S.
    MATERIALS CHEMISTRY AND PHYSICS, 2011, 130 (03) : 1022 - 1025
  • [39] MECHANISM OF DEFORMATION OF SOLID AMORPHOUS POLYMETHYLMETHACRYLATE AND POLYVINYLACETATE DURING COLD EXTRACTION
    LEBEDEV, GA
    KYSHINSKII, EV
    SOVIET PHYSICS-SOLID STATE, 1960, 2 (01): : 87 - 95
  • [40] MECHANISM OF PLASTIC-DEFORMATION OF GLASSY-POLYMERS - AMORPHOUS POLYETHYLENETEREPHTHALATE
    SHEIKO, SS
    SALAMATINA, OB
    RUDNEV, SN
    OLEINIK, EF
    VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA A, 1990, 32 (09): : 1844 - 1853