A characterization of heaviness in terms of relative symplectic cohomology

被引:1
|
作者
Mak, Cheuk Yu [1 ]
Sun, Yuhan [2 ]
Varolgunes, Umut [3 ]
机构
[1] Univ Southampton, Sch Math Sci, Southampton, England
[2] Imperial Coll London, Dept Math, London SW7 2AZ, England
[3] Koc Univ, Math Dept, Istanbul, Turkiye
关键词
SPECTRAL INVARIANTS; FLOER THEORY;
D O I
10.1112/topo.12327
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a compact subset K$K$ of a closed symplectic manifold (M,omega)$(M, \omega)$, we prove that K$K$ is heavy if and only if its relative symplectic cohomology over the Novikov field is nonzero. As an application, we show that if two compact sets are not heavy and Poisson commuting, then their union is also not heavy. A discussion on superheaviness together with some partial results is also included.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Dirac cohomology for symplectic reflection algebras
    Dan Ciubotaru
    Selecta Mathematica, 2016, 22 : 111 - 144
  • [22] HARMONIC COHOMOLOGY OF SYMPLECTIC FIBER BUNDLES
    Ebner, Oliver
    Haller, Stefan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (08) : 2927 - 2931
  • [23] Cohomology of quotients in real symplectic geometry
    Baird, Thomas John
    Heydari, Nasser
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (07): : 3249 - 3276
  • [24] COEFFECTIVE COHOMOLOGY OF SYMPLECTIC ASPHERICAL MANIFOLDS
    Kasuya, Hisashi
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (08) : 2835 - 2842
  • [25] A module structure on the symplectic Floer cohomology
    Li, WP
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (01) : 137 - 151
  • [26] Singular symplectic flops and Ruan cohomology
    Chen, Bohui
    Li, An-Min
    Zhang, Qi
    Zhao, Guosong
    TOPOLOGY, 2009, 48 (01) : 1 - 22
  • [27] Dirac cohomology for symplectic reflection algebras
    Ciubotaru, Dan
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (01): : 111 - 144
  • [28] The symplectic cohomology of magnetic cotangent bundles
    Groman, Yoel
    Merry, Will J.
    COMMENTARII MATHEMATICI HELVETICI, 2023, 98 (02) : 365 - 424
  • [29] A Module Structure on the Symplectic Floer Cohomology
    Weiping Li
    Communications in Mathematical Physics, 2000, 211 : 137 - 151
  • [30] Symplectic Flatness and Twisted Primitive Cohomology
    Li-Sheng Tseng
    Jiawei Zhou
    The Journal of Geometric Analysis, 2022, 32